3D-tulostuksen integrointi konelan opetukseen

Tämä blogikirjoitus käsittelee 3D-tulostuksen sisäänajoa Savonia-ammattikorkeakoulun konealan opetuksen sisällöksi. Lisäävä valmistus ei varsinaisesti ole mikään uusi ilmiö tuotekehityksen saralla, sillä ensimmäisiä 3D-tulostettuja kappaleita tehtiin Savoniallakin jo 2000-luvun alussa, muotoilun koulutuksen hankittua ensimmäinen lasersintraukseen perustuvan 3D-tulostimen (EOS P350). Tuohon aikaan 3D-tulostus kulki pikavalmistuksen nimellä ja sen katsottiin soveltuvan tuotannon sijaan lähinnä prototyyppien valmistukseen. Niinpä alkuvuosina 3D-tulostus Savonian sisällä palvelikin enimmäkseen maksullista palvelutoimintaa sekä alan tutkimusta, eikä levinnyt vielä opetukseen muotoilun koulutusta laajemmin.

Nykyinen konealan opetussuunnitelma, jossa 3D-tulostus on mukana, tuli käyttöön noin nelisen vuotta sitten. Tämä neljän vuoden jakso on ollut täynnä erilaisia oppeja ja oivalluksia siitä, miten 3D-tulostus voisi integroitua osaksi perusopetusta. Ensimmäinen haaste on ollut saada konetekniikan opettajat ymmärtämään ja omaksumaan lisäävän valmistuksen merkitys uutena valmistusmenetelmänä. Perinteisempiä valmistusmenetelmiä (takominen, valaminen, lastuava työstö, levytyöt, hitsaus, jne.) on opetettu koneinsinöörikoulutuksessa jo reilut 60 vuotta, joten kaikki opettajat eivät oikein vieläkään tahdo uskoa että lisäävä valmistus on noussut näin nopeasti varteenotettavaksi valmistusmenetelmäksi perinteisten rinnalle. Opiskelijat tosin ovat olleet huomattavasti ennakkoluulottomampia ja erityisen kiinnostuneita 3D-tulostuksesta. Osalla opiskelijoista onkin jo omat 3D-tulostimet kotona ja siten aiheessa ei ole enää heille mitään ihmeellistä.

Savonian konealalle 3D-tulostus saapui ensimmäistä kertaa vuonna 2009 kipsitulostimen (ZCorp Zprinter 450) hankinnan myötä. Kipsitulosteiden käyttökohteet ovat kuitenkin rajalliset, jonka lisäksi laitteisto osoittautui toiminnaltaan kovin epäluotettavaksi joten sitä hyödynnettiin opetuksessa lähinnä projektitöissä ja opinnäytetöiden yhteydessä. Laitteen toiminnan aikana kipsitulosteita käytettiin pienoismallien lisäksi mm. alumiinivalujen ja hiilikuitumuottien valmistamisessa.

Muutama vuosi kipsitulostimen hankinnan jälkeen 3D-tulostinlaitteiden kehityksessä tapahtui suuri muutos materiaalin pursotustekniikkaan perustuvien keskeisimpien patenttien rauettua. Avoimen RepRap – projektin myötä markkinoille alkoi saapua suuri määrä yksinkertaisia materiaalin pursotukseen perustuvia 3D-tulostimia. Savonialle ensimmäiset pursotustekniikkaan perustuvat 3D-tulostimet hankittiin 2011 jolloin tavoitteeksi asetettiin tiedon ja kokemuksen kerääminen siitä, miten 3D-tulostaminen tulee vaikuttamaan mm. kappaleen suunnitteluvaatimuksiin. Hankitut laitteet olivat Solidoodle –laitevalmistajan heikkolaatuisia mutta edullisia tulostimia.

Konkreettisesti 3D-tulostus saapui konealalle kuitenkin vasta ALVO-projektin myötä 2015- vuoden alkupuolella, jolloin lähdettiin kartoittamaan ja suunnittelemaan 3D-tulostusympäristön luomista Savonialle. ALVO-hankkeen pienen investointiosuuden myötä laitekanta laajeni kolmella uudella tulostimella.

Kuva 1. Hankittuja 3D-tulostimia vuodelta 2015

Konetekniikan koulutuksessa opiskelijoiden ensimmäinen konkreettinen kosketus 3D-tulostamiseen tulee ensimmäisen vuoden syksyn aikana ”valmistustekniikka 1” -opintojaksolla. Tämän opintojakson myötä opiskelijat saavat melko hyvän perustietouden lisäävästä valmistuksesta, tulostusprosesseista, tulostusmateriaaleista, tarvittavista ohjelmistoista ja erilaisista sovelluksista, joissa 3d-tulostusta käytetään nykyisin. Tämän lisäksi opintojaksoon sisältyy laboratorioharjoitukset, joissa kaikki opiskelijat pääsevät tulostamaan itse suunnittelemiaan kappaleita.

Ensimmäisen syksyn aikana konetekniikan opetussuunnitelmaan sisältyy myös ”3D-mallinnus”, ”tekninen piirtäminen” ja ”materiaalitekniikka 1.” -opintojaksot, jotka ”valmistustekniikka 1”:sen myötä tukevat lisäävän valmistuksen osaamistavoitteita. Varsinkin 3D-mallinnuksen opintojakso linkittyy erittäin tiiviisti 3D-tulostamiseen, koska tulostettavat kappaleet täytyy luonnollisesti ensiksi mallintaa / luoda geometria, jota tulostetaan. Tekninen piirtäminen puolestaan lisää opiskelijoiden ymmärrystä mm. valmistusdokumentaatiosta, valmistustoleransseista, pinnanlaadusta ja valmistusteknisistä vaatimuksista. Materiaalitekniikan opintojakso puolestaan tuo tarvittavan materiaaliteknisen osaamisen. Tavoitteena on ensimmäisen syksyn aikana saada konetekniikan opiskelijoille perusvalmiudet ja –osaaminen 3D-mallinnukseen, tekniseen piirtämiseen, konealan valmistusmenetelmiin, materiaalitekniikkaan sekä etenkin 3D-tulostukseen. Tämä pyritään saamaan aikaiseksi yhdistämällä teoriaa ja käytännön harjoittelua sopivassa suhteessa.

Ensimmäisen opiskeluvuoden kevätlukukaudella 3D-tulostus aukeaa erittäin konkreettisesti konetekniikan opiskelijoille orientaatioprojektin myötä. Tässä opintojaksossa opiskelijat pääsevät ensimmäisen kerran kosketuksiin todellisen tuotekehitysprojektin prosessiin. Opintojakson tavoitteena on ideoida, suunnitella, valmistaa ja testata todellinen laite, jossa on mukana liikkuvia osia, elektroniikkaa ja joku mekanismi, johon laitteen toiminta perustuu. Osa laitteen komponenteista valmistetaan 3D-tulostamalla lisäävän valmistuksen laboratoriossa. Aiheina kyseisellä opintojaksolla on ollut mm. höyrykone, vesipumppu, kuumailmapallo, 3D-tulostin, drone sekä laite, jonka liikettä tuottavana mekanismina on maltan risti.

Orientaatioprojektin toteutus myötäilee kansainvälistä CDIO (Concieve, Design, Implement ja Operate) pedagogista mallia, joka on käytössä useissa teknisissä yliopistoissa ympäri maapallon. Savonian konetekniikka onkin leikkimielisesti nimennyt orientaatioprojektin CDIO mallin ns. AFTT (Ass Forward To Tree) menetelmäksi, koska siinä ei varsinaisesti opeta projektinhallintaa ensimmäisen vuoden aikana.

Näinollen opiskelijaryhmät joutuvat tutustumaan tuotekehitykseen hieman ”perse edellä puuhun” menetelmällä. Niin kuin kaikissa erilaisissa pedagogissa malleissa, orientaatioprojektin oppimistulokset vaihtelevat erityyppisillä opiskelijoilla. Jotkut opiskelijat innostuvat suuresti ja kokevat oppineensa valtavasti kun taas jotkut ovat ”pihalla kuin lumiukot” opintojakson aikana. Kyseinen opintojakso on hioutunut vuosien saatossa ja olemme todenneet, että projektin aiheella on suuri merkitys opiskelijoiden motivaatiossa viedä projekti läpi alusta loppuun. Tavoitteena on viedä konkreettinen tuotekehitysprojekti läpi ideasta protoyypiksi hyödyntäen CAD – CAM ohjelmistoja ja eri valmistusmenetelmiä, mukaanlukien 3D-tulostus.

CDIO:n pedagogiseen menetelmään voi tutustua paremmin seuraavan webbilinkin kautta: www.cdio.org.

Savonian konealan orientaatioprojektin CDIO mallia voidaan kuvailla seuraavasti:

C (concieve) vaiheessa opiskelijat ideoivat ja luonnostelevat n. 4 – 5 hlön ryhmissä annetun projektin teeman mukaisia konsepteja. Esimerkiksi keväällä 2018 orientaatioprojektin teemana oli drone -lennokki, jolle tuli keksiä joku hyödyllinen käyttötarkoitus. Opiskelijat keksivät useita eri variaatiota dronen käyttöön, esim. ambulanssidrone, lääkekuljetusdrone, tavaroiden kuljetusdrone ja hälytysdrone.

D (design) vaiheessa opiskelijaryhmien tehtävänä on suunnitella valitun konseptin mukainen tuote. Suunnitteluvaihe sisältää tuotteen komponenttien ja kokoonpanon 3D-mallinnuksen SolidWorks-ohjelmalla, valmistuspiirustusten laatimisen, osaluettelon materiaalivalintoineen sekä valmistustoleranssien määrittelyt. Suunnittelussa opiskelijoiden tulee ottaa huomioon eri valmistusmenetelmien mahdollisuudet, rajoitteet ja valmistustoleranssit siten, että kappaleet ovat valmistettavissa ja lopputuote kokoonpantavissa.

Kuva 2. Esimerkkejä droneprojektin vaiheiden tuloksista: luonnosteluvaihe, 3D-CAD mallinnettu versio (Solidworks)

I (implement) vaiheessa alkaa prototyyppien rakentaminen. Ensimmäisessä vaiheessa siirrytään valmistustekniikan laboratoriotiloihin valmistamaan suunniteltujen laitteiden komponentteja. Suuri osa valmistettavista kappaleista on mahdollista valmistaa 3D-tulostamalla, jolloin tiedostot tallennetaan SolidWorksistä STL-formaattiin tulostusta varten. Tulostuksessa opiskelijat käyttävät pääasiassa pursottavia filamenttitulostimia. Filamenttimateriaalina on yleisimmin käytössä PLA, sillä se on tulostettavuudeltaan helppoa eikä siitä aiheudu juurikaan hiukkaspäästöjä tai hajuhaittoja tulostuksen aikana.

Kuva 3. Esimerkki droneprojektin osien 3D-tulostuksesta

Osien valmistuksen jälkeen opiskelijat kasaavat prototyypit ja siirtyvät sen jälkeen projektin viimeiseen vaiheeseen (O).

(O) operate on orientaatioprojektin viimeinen vaihe, jossa opiskelijat pääsevät testaamaan ja esittelemään valmiita prototyyppejänsä. Keväällä 2018 kaikkien ryhmien dronet saatiin lentämään.

Kuva 4. Esimerkkejä valmiista tuotoksista

Ensimmäisen vuoden jälkeen konealan opiskelijat pääsevät hyödyntämään 3D-tulostuksen osaamistaan seuraavan kerran 2. vuoden kevään tki-projekti -opintojakson myötä. Tässä opintojaksossa toteutetaan yrityksiltä tulevia tuotekehitysaiheita viemällä valtaosa uusista ideoista pienoismalleiksi, prototyypeiksi, mock-up malleiksi, jne.

Tähän opintojaksoon tulevat mukaan myös Savonian liiketalouden ja muotoilun opiskelijat ja he pääsevät työskentelemään monialaisissa projektiryhmissä koko kevään ajan. Kahden viimeisen vuoden ajan olemme vieneet kaikki 2. vuosikurssin opiskelijat Tampereen alihankintamessuille, jossa opiskelijoilla on ensimmäinen tki-projektin tehtävä: etsiä kevään projektin aiheita ja käydä vähintään viidellä osastolla tutustumassa teknologiateollisuuden alihankintatoimintoihin. Alihankintamessuilla alkaa vuosi vuodelta näkyä myös konkreettisemmin lisäävän valmistuksen ympärillä toimivia yrityksiä.

Konetekniikan kolmannen ja viimeisen vuoden aikana lisäävän valmistuksen osaaminen syvenee vielä joidenkin opintojaksojen (materiaalitekniikka 2, valmistettavuus, valmistusmenetelmät ja valinnainen AM-opintojakso) myötä. Tämän lisäksi opiskelijoilla on mahdollisuus suorittaa osa työharjoittelusta 3D-tulostuslaboratoriossa ja tehdä opinnäytetyö, jossa käsitellään 3d-tulostukseen liittyvää aihetta.

Tässä vaiheessa voidaan todeta, että lisäävä valmistus / 3D-tulostus on tullut jäädäkseen Savonian konetekniikan opetukseen ja tki-toimintaan. Tavoitteena on myös saada aiheeseen liittyvä opetus laajenemaan muille aloille Savoniassa, sillä tällä hetkellä ainoat 3D-tulostusta laajemmin opetuksessa hyödyntävät koulutusalat ovat muotoilu ja koneala. Tähän liittyvää pohjatyötä on tehty LIVA (Lisäävä Valmistus Pohjois-Savossa) hankkeessa valmistelemalla mm. vapaasti valittavia 3D-tulostuksen ”non-stop” –opetuskokonaisuuksia, jotka tulevat kaikkien Savonian opiskelijoiden ja täydennyskoulutuksen hyödynnettäviksi. Non-stop –termillä tarkoitetaan tässä yhteydessä sitä, että kurssit tulevat olemaan auki jatkuvasti, joten niitä voi suorittaa milloin tahansa. Pääosa kurssien teoriapuolesta suoritetaan moodle- ympäristön kautta, ja niihin liittyviä harjoitustöitä voi käydä suorittamassa Savonian 3D-tulostuslaboratoriossa itselle parhaiten sopivana ajankohtana.

Savonian 3D-tulostuslaboratorion osalta edessä on suuri askel eteenpäin vastikään käynnistyneen investointi & kehityshankkeen sekä lähivuosina tapahtuvan Savilahden kampukseen siirtymisen myötä. Tämän hetken suunnitelmien mukaan 3D-tulostuslaboratorio tullaan jakamaan kahteen osaan: yleisesti avoimena olevaan laboratoriotilaan sekä suljetumpaan, ns. ”tki” –puoleen, jossa laitteita pääsee käyttämään vain henkilökunnan opastuksella ja valvonnassa. Avoimeen käyttöön tuleva laboratoriotila saatetaan jopa sijoittaa uuden kampuksen ”sydämeen”, jolloin laboratoriotila on helposti saavutettavissa ja tekeminen näkyvää.

Vaikka laitteet jaetaankin fyysisesti kahteen tilaan, sijaitsevat ne kuitenkin saman kampuksen sisällä vain joidenkin minuuttien kävelymatkan päässä toisistaan. Taustalla on paitsi laitteiden ja materiaalien hankinta- ja käyttökustannukset myös oppilaitosympäristössä korostuva käyttöturvallisuustarve. Esimerkiksi metallin 3D-tulostuslaitteiden ja niiden materiaalien turvallinen käyttö vaatii tiettyjä pakollisia suojatoimenpiteitä, joten niiden sijoittaminen avoimeen ympäristöön ei tule olemaan mahdollista. Toisaalta taas valtaosa 3D-tulostuslaitteista on riittävän turvallisia ja helppokäyttöisiä, joten ne voivat olla opiskelijoiden käytössä kunhan laitteiden käyttökoulutus on suoritettu.

 

Anssi Suhonen
Konetekniikan Lehtori
Savonia-ammattikorkeakoulu

Antti Alonen
TKI-asiantuntija
Savonia-ammattikorkeakoulu

 

3D-tulostuksen käyttökohteita terveysalalla: case aivoverisuonet

 3D-tulostuksen käyttö anatomisten mallien valmistamiseen sekä opetukselliseen että operatiiviseen käyttöön on yksi lisäävän valmistuksen vanhimmista käyttökohteista terveysalalla. Niissä yhdistyvät mm. seuraavat 3D-tulostuksen hyvät puolet:

  • yksilöllisyys: jokainen valmistettava malli on erilainen sillä jokainen potilas on erilainen
  • hinta-laatusuhde: 3D-tulosteen valmistuskustannus esimerkiksi operointikustannukseen verrattuna on pieni ja valmistetut kappaleet laadukkaita. Lisäksi 3D-tulostus saattaa olla ainoa mahdollinen tapa valmistaa kappale.
  • nopeus: 3D-tulostetut kappaleet ovat nopeasti saatavilla
Kuva 1. Esimerkkejä 3D-tulostetuista kappaleista. Valmistajat/Laitteistot vasemmalta oikealle: HP Multi Jet Fusion 580, Mimaki 3DUJ-553, LulzBot/Polymaker, Lähde: Formnext 2018

Kyseessä on yksi 3D-tulostuksen vanhimmista käyttökohteista joten sen käytön luulisi olevan maailmanlaajuista. Käyttö onkin melko yleistä, mutta ei kuitenkaan vielä arkipäivää – varsinkaan Suomessa. Esimerkkejä käyttökohteista löytyy kuitenkin maailmalta jo runsaasti, ja esimerkiksi Materialise –yrityksen kartoituksen mukaan Yhdysvaltojen TOP-20 sairaalasta kuudellatoista on käytössä 3D-tulostusstrategia (ja osana sitä käytössä Materialisen Mimics –ohjelmisto).

Savonian LIVA –hankkeessa (Lisäävä Valmistus Pohjois-Savossa, 1.9.2016 – 31.12.2018) tutkittiin 3D-tulostuksen hyödyntämistä lääketieteellisten mallien valmistuksessa. Tutkimus toteutettiin yhteistyössä Kuopion Yliopistollisen Sairaalan Itä-Suomen Mikrokirurgiakeskuksen kanssa ja erityisenä kiinnostuksen kohteena oli multimateriaalitulostuksen hyödyntäminen eri käyttökohteissa.

Multimateriaalitulostuksella tarkoitetaan usean eri materiaalin käyttämistä tulostusprosessin aikana kappaleen valmistamiseen. Valmistetun kappaleen materiaaliominaisuudet voivat siis vaihdella eri kohdissa. Jotkin 3D-tulostusteknologiat toteuttavat multimateriaalitulostuksen sekoittamalla tulostusmateriaalin useista eri raaka-aineista, toisissa teknologioissa puolestaan ohjataan tulostusprosessia käyttämään raaka-ainetta eri lähteistä.

Tyypillisimpiä multimateriaalitulostuksen käyttökohteita ovat erilaiset kovuuden ja värien muutokset, mutta kyseessä voi olla myös huomattavasti monipuolisemmat muutokset esimerkiksi materiaalin sähkönjohtavuudessa. Teollisella puolella tällä hetkellä laitevalmistajien kärjessä ovat Stratasys (Polyjet) ja 3Dsystems (Projet), joiden järjestelmät perustuvat materiaalin ruiskutukseen.

Kuva 2. Multimateriaalitulosteita: Stratasys J750, Stratasys J750 (vokselitason tulostuksella, Fraunhoferin Cuttlefish -sovelluksella), Keyence, Lähde: Formnext 2018

Tutkimuksen kohteena oli aivovaltimopullistuman (aneurysma) mallitulosteen valmistaminen. Valmista tulostetta olisi tarkoitus käyttää opetuskäytössä operaation harjoittelussa ja lisäinformaation tuottamisessa neurokirurgeille.

Anatomisesti korrektin mallin 3D-tulostaminen perustuu luonnollisesti potilaan mittadatan käyttämiseen mallin luomisessa. Terveydenhuollossa yleisesti käytettyjä kuvantamismenetelmiä kuten tietokonetomografia (CT) ja magneettikuvaus (MRI) on mahdollista käyttää 3D-tulostuksen lähtötietona. Terveydenhuollon kuvantamismenetelmien käyttämä tiedostoformaatti on yleensä DICOM (Digital Imaging and Communications in Medicine), joka on käytännössä suuri määrä ”kuvasiivuja”.

Ennen varsinaista tulostusprosessia lähtötieto täytyy muuttaa DICOM –muodosta mallinnusohjelmien yleisemmin tunnistamaan formaattiin. Toistaiseksi yleisin 3D-mallien tiedostoformaatti 3D-tulostuksen yhteydessä on pintamalli (STL).

DICOM –kuvan muuttaminen tulostuskelpoiseksi pintamalliksi ei ole vielä toistaiseksi automaattinen ”klik-klik” –toiminto vaan prosessissa on jonkin verran käsityötä mukana. Markkinoilla on kokonaisvaltaisia, kaupallisesti myynnissä olevia ohjelmistopaketteja kuten Materialise Mimics, mutta myös runsaasti vapaasti jaossa olevia ilmaisohjelmia kuten Invesalius ja 3D-Slicer. Yleistäen niiden välinen ero on käytettävyydessä – kaupallisissa ohjelmissa käytettävyyteen on kiinnitetty selvästi enemmän huomiota.

Käytännössä toimintaperiaate ohjelmilla on sama. Niillä saa eroteltua DICOM –kuvista eri tyyppiset massat (esim. luu, verisuonisto) enemmän tai vähemmän helposti, riippuen mm. DICOM –materiaalin laadusta. Ohjelmissa valitaan värikontrastien avulla haluttu massatyyppi, rajataan tarkastelu tietylle alueelle ja muodostetaan siivuista 3D-malli STL-muotoon. Muodostuvan kuvan tarkkuus riippuu käytetystä kuvaustarkkuudesta ja valintaan käytetyistä parametreistä. Kuvan hyödyntämisessä tulee huomioda se, mitä kuvattava massa itseasiassa on. Esimerkiksi aivoverisuonien osalta varjoainekuvassa näkyvä verisuonisto on itseasiassa verisuonen sisällä oleva veri. Mikäli kiinnostuksen kohteena on varsinaiset verisuonet, on niiden seinämät luotava ”verimallin” ympärille jälkikäteen.

Kuva 3. Varjoainekuva Invesaliuksessa, oikealla pintamalliksi muutettu verisuonisto Rhinoceros –ohjelmassa, jossa siitä rajattiin tulostettava alue lopullisen mallitiedoston luomista varten ja luotiin veren ympärille verisuonten seinämät.

Kun DICOM –kääntäjällä on luotu pintamalli, siirretään se soveltuvaan 3D-mallinnusohjelmistoon. Tekniikan alalla käytössä olevat suunnitteluohjelmat eivät yleisesti ottaen sovellu vapaamuotoisten, monimutkaisten pintamallien käsittelyyn. Pintamallien käsittelyyn soveltuvia mallinnusohjelmia ovat esimerkiksi vapaasti saatavilla oleva meshmixer (http://www.meshmixer.com/), edullisen hintainen Rhinoceros (https://www.rhino3d.com/), teknisempi ja kalliimpi Ansys Spaceclaim (https://www.ansys.com/products/3d-design/ansys-spaceclaim) tai Autodesk Netfabb (https://www.autodesk.com/products/netfabb/overview).

Mallinnusohjelmassa ensimmäinen tehtävä on mallin korjaus. STL-muotoisten pintamallien yleisin ongelma on se, että malliformaatti on aika herkkä ”hajoamaan”. Kun formaattiin tallennetaan dataa, tulee joukkoon usein runsaasti virheitä. STL-formaatissa pinta muodostuu eri kokoisista kolmioista, joten tallennusvaiheessa monimutkaisen tai kaarevan pinnan tallennus kolmioiksi voi tapahtua virheellisesti siten, että esimerkiksi kolmioiden pinta-alat menevät sisäkkäin tai päällekkäin. Mitä monimutkaisemmasta geometriasta on kyse, sitä todennäköisemmin virheitä esiintyy. Yleisimpiä virheitä ovat sisäkkäin menevät pinnat.

Kuva 4. Mallitiedosto siirrettynä meshmixer –ohjelmaan. Keskimmäisessä kuvassa näkyy pintamallin kolmioverkko, oikeanpuolimmaisessa kuvassa havaitut virheet.

Suurikokoisen, ”rikkinäisen” mallin avaaminen 3D-mallinnusohjelmalla voi helposti aiheuttaa ohjelmaan virhetilan, jonka seurauksena ohjelma kaatuu. Useimmissa ohjelmissa on automaattisia korjaustoimintoja, joiden avulla pystyy korjaamaan suurimman osan virheistä. Korjaustoiminnon käyttäminen on usein hidasta, mutta huomattavasti nopeampaa kuin virheiden korjaaminen käsin. Kaikkia virheitä ohjelma ei kuitenkaan osaa korjata automaattisesti, joten varsinkin monimutkaisisten mallien korjauksessa käsityötä jää vielä runsaasti.

Virheiden korjausten jälkeen vuorossa on mallin muokkaus. Esimerkiksi verisuonten tapauksessa verimallin ympärille luotiin verisuonten seinämät. Verisuonten seinämien paksuus vaihtelee välillä 0.25 – 0.5 mm joten kyseessä on työläs ja tarkkuutta vaativa työvaihe.

Verisuonten mallinnuksen osalta tutkimuksessa päädyttiin käyttämään kolmea eri ohjelmaa:

  1. Invesalius, jolla irroitettiin verisuonisto muusta sälästä ja tallennettiin STL-pintamalliksi.
  2. Rhinceros, jolla siivottiin mallia ja kasvatettiin verisuonille seinämä.
  3. Netfabb, jolla korjattiin mallin pinta ehjäksi ja virheettömäksi tulostusta varten.

3D-mallitiedoston valmistamisen jälkeen vuorossa oli varsinainen mallin valmistaminen 3D-tulostamalla. Ensimmäisenä oli tarkoitus kerätä tietoa multimateriaalitulosteiden ominaisuuksista, joten tehtiin testisarjoja eri kovuusasteilla. Tarkoituksena oli myös hankkia kokemusta Stratasysin uusimmasta laitteistosta, J750 –nimellä kulkevasta 3D-tulostimesta jossa lopputuotteen materiaali voidaan määritellä jopa kuutta eri materiaalia sekoittamalla.

Lähin Stratasys J750 laite löytyi tutkimuksen aikaan tanskalaiselta tulostuspalveluja tarjoavalta yritykseltä. Yrityksellä on ollut asiakkaina useita terveysalan toimijoita, mutta verisuoniin liittyen tulostus oli ensimmäinen. Ensimmäisessä kokeilussa valmistettiin 9 kpl sylinterimäisiä testikappaleita suurin piirtein verisuonten paksuuksilla sopivan kovuusasteen löytämiseksi. Testikappaleiden lisäksi tulostettiin myös ensimmäinen verisuonen mallikappale, joka valmistettiin laatikon sisään. Ajatuksena oli säilyttää laatikon avulla geometria oikeassa orientaatiossa, ja testausvaiheessa leikellä laatikosta verisuoni näkyville tarvittavilta osilta. Laatikko osoittautui kuitenkin liian sitkeäksi rakenteeksi, vaikka kovuudeksi määritettiin pehmein materiaali joka Stratasysin laitteella oli mahdollista (shore A27).

Kuva 5. Sopivan käsituntuman löytämiseksi valmistettiin eri kovuusasteilla (Shore A30 – Shore A60) lyhyitä testikappaleita, joita Mikrokirurgiakeskuksen neurokirurgit kokeilivat. Kuvassa oikealla neurokirurgian ylilääkäri Timo Koivisto (KYS Neurokeskus).

 

Kuva 6. Verisuonimallin ensimmäinen versio valmistettiin läpikuultavan laatikon sisälle, tarkoituksena säilyttää kappaleen geometria oikeassa asennossa testausten ajan. Vasemalla tuloste, oikealla 3D-malli.

Kokemuksista viisastuneena seuraava versio kokeiltiin ilman laatikkoa, ja pelkällä seinämärakenteella. Polyjet –menetelmällä ei voi tulostaa tyhjän päälle, joten verisuoni täytettiin tukimateriaalilla, joka Stratasysin tapauksessa on tärkkelyspohjaista. Tukiaineen poistaminen tapahtuu painepesulla, josta johtuen sen poistaminen ei näin ohuilla seinämillä onnistunut ilman, että kappaleen kestävyyttä riskerattiin. Se jäi siis paikoilleen verisuonen sisälle.

Kun verisuonen rakennetta kokeiltiin tarttujilla, se repesi. Syynä tähän on kova tukirakenne verisuoniston sisällä.

Kuva 7. Versiot 2 (ontto, tukirakenne sisällä) ja 3 (kiinteä, tukirakenteilla)

Kolmannessa versiossa verisuoni tehtiin joustavasta materiaalista täytettynä, ja suoniston kokoa hieman kasvatettiin. Samalla testattiin tolppamaisten tukirakenteiden toiminnallisuutta geometrian muodon säilyttämisessä.

Tulevaisuudessa tavoitteena on valmistaa verisuonet onttoina, ja suunnitelmissa on tutkia myös nestekierron lisäämistä todellisen tuntuman parantamiseksi. Tämä on periaatteessa mahdollista jo nyt, mutta vaatii hienosäätöä 3D-mallin suunnittelussa sillä tukirakenteet pitää suunnitella siten, että ne saadaan jälkikäteen poistettua.

Seuraavassa versiossa tutkitaan muun päärakenteen, ml. pääkallo mukaan ottamista, jotta verisuonten operointia voisi harjoitella oikeassa käyttöympäristössä.

Kuva 8. Potilaan pääkallo. Vasemmalla DICOM, keskellä pintamalli, oikealla jauhepetitekniikalla tulostettu malli

 

Antti Alonen
TKI-asiantuntija
Savonia-ammattikorkeakoulu

 

 

Formnext 2018- messujen tilannekatsaus, osa 2/2

Metallitulostuksen uusi aalto

Yhtenä Formnext –messujen kiinnostavimmista osa-alueista oli viime vuoden tapaan metallin 3D-tulostukseen liittyvät asiat. Metallin 3D-tulostusmarkkinat kasvoivat 2017 80% edelliseen vuoteen verrattuna. Tämän vuoden tilastoa ei luonnollisesti ole vielä saatavilla mutta messujen perusteella kasvuvauhti on edelleen kovaa.

Menossa on metallin 3D-tulostuksen “uusi aalto”, sillä itse valmistusmenetelmähän ei ole uusi asia. Jo 2000 luvun alkupuolella markkinoilla oli tarjolla laitteita useilta eri laitevalmistajilta mutta teollisuuden valmistusmenetelmänä se on kuitenkin yleistynyt ja arkipäiväistynyt vasta viime vuosien aikana. Taustalta löytyy mm. seuraavia syitä:

  • Laitteiden tekniset ominaisuudet ovat parantuneet ja materiaalikustannuksetkin ovat kääntyneet laskuun saatavuuden samanaikaisesti parantuessa.
  • Lopputuotekäyttöön tulevien osien sertifioinnit ja niihin liittyvät prosessit alkavat olla suurilla toimijoilla selvillä. Ilmailu- ja ajoneuvoteollisuuden toimijat sertifioivatkin kiihtyvällä tahdilla 3D-tulostettuja metalliosia yhä laajemmin käyttöön. Takana on nyt useiden vuosien kokemusta menetelmien soveltuvuudesta ja materiaalien käyttäytymisestä eli tehty tutkimus- ja tuotekehitystyö alkaa tuottaa hedelmää.
  • Keskeisiä patentteja on rauennut, mikä mahdollistaa ns. ”perustekniikan” hyödyntämisen entistä suuremmalle joukolle laitevalmistajia. Metallilaitteiden laitevalmistajia kun katsotaan niin markkinoille onkin tullut runsaasti uusia toimijoita aasian markkinoilta – kilpaillen samalla tekniikalla kuin perinteiset suuret länsimaalaiset toimijat. Myös näiden  ”halvempien” laitteiden laitevalmistajat tarjoavat entistä suurempia, perinteiseen jauhepetitekniikkaan perustuvia laitteita. Hinnat tosin ovat nousseet osittain jo hyvinkin lähelle länsimaisia toimijoita.
  • Uudet teknologiat: Metallin 3D-tulostusteknologiat ovat pitkään perustuneet pääosin joko jauhepetitekniikkaan tai suorakerrostukseen. Markkinoilla on nyt tullut (ja edelleen tulossa) ”uusia” teknologioita, jotka tosin useimmiten perustuvat vanhojen teknologioiden parantamiseen ja niiden yhdistelyyn. Näitä ovat esimerkiksi pursotus+sintraus –kombinaatioon perustuvat laitteet Markforgedilta ja Desktop Metallilta sekä HP:n & Stratasysin kehittämät järjestelmät joiden ennakoidaan tulevan myyntiin muutaman vuoden kuluessa.
  • Kappaleiden suunnitteluun käytettävät ohjelmistot ovat parantuneet ja niihin on alkanut ilmaantua ominaisuuksia, jotka helpottavat kappaleiden suunnittelua myös lisäävää valmistusta silmällä pitäen. Esimerkiksi topologian optimointiominaisuuksia on tarjolla useissa suunnitteluohjelmistoissa mahdollistaen paremmin 3D-tulostukseen soveltuvien kappaleiden tekemisen entistä helpommin.
Kuva 1.Esimerkkejä metallin jauhepetitekniikalla valmistettavista piensarjoista. Vasemmalla Bugatti Chiron cam cover (AlSi10Mg, 8 kpl/ajo, kerroskorkeus 60 µm, tulostusaika 4d 7h 42 min), Betatypen auton ajovalojen jäähdytysripoja (Alumiini, 384 kpl/ajo, kerroskorkeus 60 µm, tulostusaika 18 tuntia) ja oikealla Bionic productionin injektoreita (Inconel 718, 70 kpl/ajo, kerroskorkeus 45 µm, tulostusaika 22h 29 min)

Pursotukseen ja sintraukseen perustuvat menetelemät

Yksi tämän hetken hypetyksen kohteista on pursotukseen ja sintraukseen perustuvien 3D-tulostusmenetelmien saapuminen markkinoille. Niiden on mainostettu olevan edullisempia ja yksinkertaisempia kuin jauhepetitekniikkaan perustuvat laitteet, jotka ovat teknisesti kalliita ratkaisuja niin laitteistojen kuin materiaalienkin osalta. On kuitenkin hyvä pitää mielessä että  valmistusmenetelmät poikkeavat olennaisesti toisistaan joten ne eivät varsinaisesti kilpaile keskenään samoista käyttökohteista. Hieman yleistäen voidaan todeta että pursotusmenetelmä on edullisempi, mutta tulostusjäljeltään karkeampi. Jauhepetimenetelmä on puolestaan kalliimpi, mutta mahdollistaa tarkkojen ja vaativien kappaleiden valmistuksen.

Pursotus+sintraus –menetelmään perustuvien laitteiden ajatuksena on käyttää yleisemmin saatavilla olevaa MIM (Metal Injection Molding) –materiaalia ja sekoittaa se sideaineeseen. Tämä mahdollistaa pursotusmenetelmän käyttämisen kappaleen muodon luomisessa. Yksinkertaisesta toimintaperiaatteesta johtuen laitteiden valmistuskustannukset ovat jauhepetitekniikkaan verrattuna halvempia. Teknisesti prosessi menee seuraavasti:

  • 3D-tulostus (3D-printing): Valmistetaan pursotusmenetelmällä kappaleen muoto tukirakenteineen.
  • Sideaineen poisto (Debinding): Pesuvaiheessa 3D-tulosteesta pestään suurin osa sidosaine pois ennen sintrausta.
  • Sintraus (Sintering): Kappale sintrataan uunissa lopulliseen olomuotoonsa. Lopputuloksena on tiivis (96-99%) metalliosa.

Sintrauksen aikana kappale kutistuu noin 20% joka voi aiheuttaa tietyillä geometriamuodoilla haasteita, vaikka kutistuma otetaankin automaattisesti huomioon tulostusohjelmassa.

Tukirakenteita tarvitaan paitsi pursotusmenetelmän takia, myös myöhemman vaiheen tiivistymisen vuoksi muodon säilyttämiseen. Tukirakenne pitää huolen siitä, että kappale kutistuu oikeassa suhteessa koko geometrian osalta. Nerokkaana yksityiskohtana sekä Markforged että Desktop Metalin laitteissa tukirakenteen ja kappaleen väliin tulostetaan keraamista irroituskerros, joka mahdollistaa tukirakenteen helpon irroittamisen. Sintrauksen jälkeen tiiviistä osasta voidaan napsutella tukirakenteet keraamisen irroituskerroksen ansiosta helposti pois joka nopeuttaa jälkikäsittelyvaihetta huomattavasti.

Periaatteessa samaan toimintaperiaatteeseen perustuvia ratkaisuja tarjoavat useammatkin valmistajat. Muitakin toteutuksia ja laitevalmistajia on olemassa, mutta Markforged ja Desktop Metal ovat kaupallistamisessa pisimmällä tarjoten toimivaa pakettia tutkimus-ja tuotantokäyttöön. Markforged ilmoitti toimittaneensa asiakkaille jo 100 järjestelmää, ja että vuoden 2018 loppuun mennessä on toimitettu 200 kpl. Desktop metal puolestaan kertoi että toimitukset alkavat vuoden 2019 aikana.

Kuva 2. Vasemmalta oikealle: Markforged Metal X, Metal X –laitteen sintrausuuni, Desktop Metal Studio 3D-tulostin, DM Studion pesuri
Kuva 3. Vasemmalla Markforged Metal X -laitteella tulostettu levymäinen kappale kierteineen, oikealla Desktop Metal:in esimerkki. Myös pursotusmenetelmä mahdollistaa pienet piirteet, vaikka tarkkuus ei jauhepetitekniikan tasolle ylläkään.

Muita uutuuksia

HP on yksi viime vuosien seuratuimpia 3D-tulostinlaitteiden valmistajia niin muovin kuin metallin 3D-tulostukseen liittyen. Yritys toi muutama vuosi sitten markkinoille MultiJet Fusion –tekniikkaan perustuvat laitteet muovin 3D-tulostukseen ja seuraavaksi on vuorossa metallitulostinten vuoro. Metallilaitteet kulkevat nimellä Metal Jet,  ja niitä toimitetaan ensimmäisille asiakkaille 2020.  Tulevia käyttökohteita on julkisuudessa esitelty useammankin valmistajan toimesta ja Formnext –messuilla oli ensi kertaa esillä myös itse laite.

HP on markkinoinut laitteitaan nimenomaan sarjatuotantoon soveltuviksi ja ensimmäisten asiakkaiden joukosta löytyykin sellaisia yrityksiä kuin Volkswagen, joka on ilmoittanut valmistavansa jatkossa satojatuhansia osia metallin 3D-tulostuslaitteita. Metallin 3D-tulostuksessa ei siis ole enää prototyyppit ja piensarjat, vaan painotus on uusien teknisten ratkaisujen myötä siirtymässä entistä vahvemmin myös sarjatuotannon puolelle.

Kuva 4. Vasemmalla HP Metal Jet, Keskellä VW –konsernin vaihdekepin nuppi, oikealla esimerkki potentiaalisista tuotanto-osista.

Stratasys on yksi maailman suurimpia ja vanhimpia yrityksiä 3D-tulostuksen saralla, onhan yrityksen perustaja pursotusmenetelmän kehittänyt ja patentoinut Scott Crump. Stratasys on ollut pitkään markkinajohtaja pursottavaan tekniikkaan perustuvan teollisen valmistuksen puolella, tarjoten laitteita ja tulostuspalvelua varsinkin erityismateriaaleille kuten ULTEM ja PEEK.

Nyt yritys on tuomalla ratkaisuja myös metallipuolelle. Stratasys kutsuu menetelmää nimellä LPM (Layered Powder Metallurgy), ja se tulee myyntiin muutaman vuoden kuluttua. Itse laitetta ei vielä ollut näkyvillä, mutta muiden valmistajien tapaan esillä oli menetelmällä tehtyjä esimerkkikappaleita. Menetelmä poikkeaa muutamilta osin perinteisestä sidosaineruiskutusmenetelmästä – tarkempi kuvaus laitteen toiminnasta löytyy oheisen linkin takaa: https://www.youtube.com/watch?v=tqU0U6-sAM4

Kuva 5. Stratasys:in esimerkkikkappale LPM-metallitulosteesta ja menetelmän eduista verrattuna jauhepetitekniikkaan

3DSystems on maailman vanhin 3D-tulostusalan yritys (perustettu 1986) joka kehitti ja toi myyntiin ensimmäisen 3D-tulostimen, SLA-tekniikkaan perustuvan “SLA-1” -laitteen vuonna 1987. Yritys keskittyi pitkään muovitulostukseen kunnes vuonna 2013 osti metallin 3D-tulostukseen erikoistuneen Layerwisen ja lähti mukaan metallitulostinten kehitykseen. 3DSystems käyttää metallin tulostustekniikastaan termiä “Direct Metal Printing”. Viime vuosina yritys on panostanut entistä enemmän myös ohjelmistopuoleen ja tarjoaa tällä hetkellä monipuolista 3DExpert –ohjelmistoa, jolla tulostusprosessia voidaan hallita alusta loppuun saakka. Lisäksi siinä on laajat ja monipuoliset ominaisuudet geometrioiden muokkaamiseen. Ohjelma vaikuttaisikin olevan varteenotettava vaihtoehto Materialisen Magics –ohjelmistopaketille.

Kuva 6 .3Dsystemsin 3DExpert –ohjelman hienoja puolia on mm. helppo tapa mallintaa monipuolisesti erilaisia pinta- ja lattice-rakenteita.

Yritys järjesti Formnextin yhteydessä muutaman tunnin seminaaritilaisuuden, jossa kerrottiin tulevista muutoksista laitekantaan. Jatkossa 3D-systems tarjoaa teolliseen tuotantoon kahta eri kokoluokan laitetta: DMP Factory 350 ja DMP Factory 500 joissa on mm. automatisoitu jauheenhallintajärjestelmä.

DMP 350 koneesta on tarjolla myös ”Flex” –versio, joka nimensä mukaisesti soveltuu joustavammin tutkimus- ja tuotekehityskäyttöön. DMP –laitteissa tulostusalue on toteutettu irroitettavan kelkan avulla joka mahdollistaa nopeamman materiaalivaihdon.

SLM päivittää 280 konesarjansa jo kolmanteen sukupolveen vuoden 2019 aikana. Kakkosversiossa parannettiin mm. tulostuskammion kaasuvirtausta, ja kolmosversion suurimpiin parannuksiin kuuluu kestosuodatin, joka nopeuttaa ja helpottaa suodattimen vaihtoprosessia. Uutuutena oli myös koneeseen liitettävä automaattinen materiaalinkäsittelyasema joka nopeuttaa tulostuksen aloitusta huomattavasti.

Kuten kilpailijoidenkin vastaavissa järjestelmissä, automaattinen materiaalinkäsittely käytännössä kuitenkin pakottaa yhden valitun materiaalin käyttöön. Vaikka koneeseen tarvittaessa pystyykin vaihtamaan toisen materiaalin, on materiaalinvaihto huomattavasti hitaampaa ja työläämpää kuin ilman materiaalinkäsittelyasemaa.

SLM:n osastolla oli esillä Divergent Blade –urheiluauton korirakenne, joka on 3D-tulostettu alumiinista ja titaanista. Runkorakenne painaa vain 46 kg, kun valmiin auton kokonaismassa on 630 kg. Yksipaikkaisessa autossa on 760 hevosvoimaa ja se kiihtyy 0-100 km 2,2 sekunnissa eli todennäköisesti kohderyhmänä ei tälläkään autolla ole lapsiperheet.

Kuva 7. Divergent Blade ja 3D-tulostettu korirakenne.

Trumpf esitteli messuilla laajan laitevalikoiman lisäksi uutta vihreään laseriin perustuvaa järjestelmää, joka mahdollistaa mm. kuparin ja kullan 3D-tulostuksen. Kupari on materiaalina haastava tulostettava heijastavasta pinnanlaadusta johtuen mutta Trumpfin ratkaisi ongelman käyttämällä vihreän laserin aallonpituutta. Yritys oli myös päivittänyt suurinta teollisen mittakaavan jauhepetilaitteistoaan (TruPrint 5000) mm. lämmitettävällä (500 °C) tulostusalustalla.

Renishawin osastolla oli esillä RenAM 500Q, yrityksen uusin teolliseen käyttöön tarkoitettu 3D-tulostusjärjestelmä joka on varustettu neljällä 500W laserilla ja melt pool monitoring –järjestelmällä.

Additive industries esitteli Metalfab1 -järjestelmäänsä uuden jälkikäsittelymoduulin, joka hoitaa samassa työvaiheessa jauheenpoiston, kappaleiden sahauksen ja tulostusalustan suoristuksen koneistamalla. Yrityksen tulostusjärjestelmän voi tällä hetkellä muodostaa seuraavista moduuleista: 3D-tulostusmoduuli 1-4 laserilla varustettuna (max. 4 kpl järjestelmässä), lämpökäsittelymoduuli, edellä mainittu uusi jälkikäsittelymoduuli, varastointimoduuli (max. 12 kpl varastossa) ja purkumoduuli.

Kuva 8. Additive Industries –järjestelmällä alkaa olla jo pituutta. Oikealla EOS:in osastolla esillä ollut Siemensin uusi 3D-tulostamalla valmistettava SGT-800 polttimen kärki, materiaalina EOS NickelAlloy HX. Valmistaminen 3D-tulostamalla on mahdollistanut paremman geometrian (13 osaa -> 1 osa, kevyempi rakenne, parempi jäähdytys) sekä merkittävän toimitusajan nopeutumisen (26 viikkoa -> 3 viikkoa).

 

Antti Alonen
TKI-asiantuntija
Savonia-ammattikorkeakoulu

 

Generative design – suunnittelun uusi sukupolvi

Viime vuosien aikana markkinoille on tullut suunnitteluohjelmia, joiden toimintaperiaatteeksi kerrotaan “generative design”, eli generatiivinen suunnittelu. Niitä mainostetaan topologian optimoinnin seuraavaksi sukupolveksi ja käyttökohteina mainitaan erityisesti 3D-tulostettavat tuotteet.

Generatiivisella suunnittelulla tarkoitetaan iteratiivista suunnitteluprosessia, jossa ohjelmisto luo tietyn määrän ratkaisuvaihtoehtoja, jotka täyttävät ohjelmalle asetetut reunaehdot ja suunnittelukriteerit. Ohjelmistoa käyttävä suunnittelija rajaa vaihtoehtojen määrää säätämällä kriteerien raja-arvoja. Generatiivisen suunnittelun avulla voidaan käydä läpi suuri määrä ratkaisuvaihtoehtoja ja optimoida tulosta haluttuun suuntaan. Suunnitteluprosessin luonne myös pakottaa määrittämään suunnittelukriteerit huolellisesti ennen suunnittelun aloittamista. Tästä syystä generatiivinen suunnittelu on vaativaa ja edellyttää ainakin jonkin verran mekaniikan ja materiaalien ominaisuuksien tuntemista sillä tietokone tai tekoäly ei tee suunnittelutyötä kokonaan ihmisen puolesta tälläkään menetelmällä.

Ratkaisujen ”hyvyys” riippuu käytetystä ratkaisualgoritmista. Monesti suunnittelussa tavoitteena on toiminnallisuuden lisäksi minimoida kappaleen massa jolloin myös suunniteltavan kappaleen lujuustarkastelu on olennaista. Ainakin joihinkin generatiivisen suunnittelun ohjelmistoihin sisältyy myös lineaaristen jännitysten FEM-laskenta. Tämä voi joissain ei-kriittisissä kompakteissa rakenteissa olla riittävä, mutta suurempien, merkittävää kuormaa kantavien, riskialttiiden tai muuten kriittisten rakenteiden osalta on syytä tehdä erillinen varsinainen lujuuslaskenta suunnitellun kappaleen vaatimustenmukaisuuden toteamiseksi. Näin voidaan varmistua kappaleen kuormankanto- ja muodonmuutoskyvystä, stabiliteetista, värähtelyominaisuuksista sekä väsymiskestosta.

Savonialla testattiin Generatiivista suunnittelua Autodeskin Fusion 360 –ohjelmistolla. Testattavaksi rakenteeksi valittiin selkeän ja hyvän vertailukohdan saamiseksi kuvassa 1 esitetty fiktiivinen korvake, joka on muodoltaan ja rakenteeltaan varsin perinteinen metalliteollisuudessa käytetty osa. Savonian ALVO -projektissa testikappaleelle tehtiin topologiaoptimointi kahdella eri ohjelmistolla (PaReTo-Works ja SolidThinking Inspire). Korvake on siis myös eri optimointimenetelmien vertailun mielessä mielenkiintoinen. Allaolevassa kuvassa esitetty korvakkeen optimoitu versio on suunniteltu uudelleen kahden optimointikierroksen perusteella.

 

 

Kuva 1. Fiktiivinen korvake, josta tehtiin ALVO-projektissa topologia-optimoitu versio. Vasemmalla perusosa, oikealla optimoitu versio.

Generatiivinen suunnittelu lähtee liikkeelle määrittämällä suunnittelukriteerit. Aluksi on määriteltävä suunniteltavan kappaleen materiaali tai materiaalivaihtoehdot, valmistusrajoitteet, tarvittavat toiminnalliset piirteet (säilytettävä geometria), liittyvien osien ja työkalujen tilavaraukset (estegeometria) sekä käytettävät kuormat, varmuusluku kuormien suhteen ja reunaehdot. Kuvassa 2 on esitetty näitä suunnitteluvaiheita Autodesk Fusion 360 ohjelmassa.

Kuva 2. Korvakkeen generative design –aihio, estegeometria (liittyvät osat, luoksepäästävyys työkaluille jne.), säilytettävä geometria, käytetyt kuormat ja reunaehdot, valmistusrajoitteet ja materiaali

Lähtötietojen määrittämisen jälkeen suunnittelualgoritmi luo muuttujien määrän perusteella joukon ratkaisuja. Korvake-esimerkissä muuttujana on vain tulostussuunta (kappale halutaan 3d-tulostaa). Tulostussuunta X, Y tai Z suuntaan 45 asteen säännön rajoittamana eli kappaleeseen ei saa muodostua tulostussuuntaan nähden päälle kaatuvia eli negatiivisia pintoja yli 45 asteen kulmassa. Muita mahdollisia muuttujia voivat olla eri materiaalit tai eri valmistusmenetelmät omine muuttuvine rajoitteineen. Kuvassa 3 on esitetty Fusion 360 ohjelmiston pilvessä luomat ratkaisut korvakkeen muodoksi.

 

Kuva 3. Ratkaisut

Kuvissa 4 ja 5 näkyvät ratkaisujen 1 ja 2 3D-mallit ja asetettuja kuormia vastaava lineaarisen staattisen analyysin jännitystila. Fusion 360 –ohjelmiston luomasta jännityskuvaajasta ei voida lukea paikallisia tarkkoja jännityksen arvoja, joten se on vain erittäin karkea suuntaa antava analyysi jopa lineaariseksi jännitysanalyysiksi.

Kuva 4. Ratkaisu 1, jännitykset
Kuva 5. Ratkaisu 2, jännitykset

Edellämainitun testikappaleen lisäksi alla on esitelty muutama kuva ohjelman tutoriaalin esimerkkikappaleesta. Autodeskin Fusion 360 tutorial-materiaaleista löytyy harjoituksia, joiden avulla generatiivisen suunnittelun kanssa pääsee hyvin alkuun. Kuvassa 6 on esitetty eräässä harjoituksessa käytetty malli.

 

Kuva 6. Autodeskin tutoriaalissa käytetty malli

Edellä esitetyn harjoitusmallin ratkaisuksi saadaan 16 eri vaihtoehtoista muotoa. Muodot on esitetty kuvassa 8. Harjoituksessa muuttujina on neljä eri materiaalia ja neljä eri valmistustapaa (3D-tulostus X, Y ja Z suuntiin sekä rajoitteeton valmistusmenetelmä).

Kuva 7. Tutoriaalin kappaleen ratkaisut

Fusion 360 ohjelmistossa on neljä erilaista tapaa tarkastella ohjelman luomia ratkaisuja: pikakuvakkeet, pikakuvakkeet ja ominaisuudet, parvikuvaaja sekä taulukko. Eri tarkastelutavoilla on helppo verrata ratkaisujen ominaisuuksia keskenään ja painottaa tai rajata tiettyjä ominaisuuksia. Kuvassa 9 esitetty ratkaisut taulukkomuodossa.

Kuva 8. Tutoriaalin ratkaisut, taulukko

Korvakkeen ratkaisuista 1 ja 2 päätettiin tehdä myös koetulosteet Savonian 3D-tulostuslaboratoriossa. Vertailun vuoksi tulostettiin myös ALVO-projektin korvakkeet. Kaikki tulosteet onnistuivat hyvin, valmiit kappaleet on esitetty kuvissa 9 ja 10.

Kuva 9. Topologia-optimoitu korvake tulostettuna, versiot vasemmalta alkaen: alkuperäinen, 1. optimointi, 2. optimointi, 3.optimointi (alumiinituloste)
Kuva 10. Generatiivisella suunnittelulla aikaansaadut korvakkeet tulostettuna (ratkaisut 1 & 2)

Generatiivinen suunnittelu on mielenkiintoinen lisä suunnittelumenetelmiin. Erityisesti erikoisempaa design-tuotetta suunnitellessa menetelmä on varmasti käyttökelpoinen. Myös korkean teknologian tuotteet esimerkiksi ilmailuun, avaruustekniikkaan tai huippu-urheiluun liittyen ovat potentiaalisia käyttökohteita. Näissä sovelluskohteissa kappaleen massan tai tilavuuden optimoinnilla voi olla huomattavasti suurempi merkitys kuin suunnittelu- tai valmistuskustannuksilla. Myös kalliimpien valmistusmateriaalien tapauksessa massan optimointi voi olla kannattavaa korkeista suunnittelu- ja valmistuskustannuksista huolimatta.

Menetelmä on kuitenkin monimutkainen ja työläs käyttää, joten sen käyttö yksinkertaisiin ja karkeisiin teollisuuden tuotteisiin ei ole tarkoituksenmukaista. Suunnitteluprosessin tuotoksena syntyvien kappaleiden monimutkaiset muodot puolestaan rajaavat valmistusmenetelmät käytännössä valu- ja 3D-tulostusmenetelmiin.

 

 

Simo Mäkinen
TKI-asiantuntija
Savonia-ammattikorkeakoulu

 

Suorakerrostus ja 3D-tulostus roboteilla

Suorakerrostus (DED – Direct Energy Deposition) on metallien lisäävän valmistuksen menetelmä, joka hyödyntää eri vaihtoehtoja ja yhdistelmiä lämmöntuonti- ja materiaalinsyöttötekniikoista. Suorakerrostusmenetelmä mahdollistaa myös useamman eri materiaalin yhtäaikaisen syöttämisen valmistettavaan kappaleeseen. Materiaali syötetään lanka- tai jauhemuotoisena. Vaihtoehtoja lämmöntuonnille suorakerrostuksessa on käyttää lasersädettä, elektronisuihkua tai valokaarta. Tulostuspään liikuttamiseen käytetään joko robottikäsivartta tai mekanisoitua moniakselista liikejärjestelmää. Tekniikkaa tarjoavien laitevalmistajien käyttämiä termejä suorakerrostuksesta ovat ainakin seuraavat:

  • DLF (Directed light fabrication)
  • DMD (Direct Metal Deposition)
  • EBAM (Electron beam additive manufacturing)
  • EBF (Electron beam freeform fabrication)
  • LaserCast
  • Laser Direct Casting
  • Laser Generation
  • LBMD (Laser based metal deposition)
  • LC (Laser consolidation)
  • LENS (Laser engineered net shaping)
  • LFF (Laser freeform fabrication)
  • LHW (Laser hot-wire additive manufacturing)
  • LMD (Laser metal deposition)
  • RPD (Rapid Plasma Deposition)
  • WAAM (Wire and arc additive manufacturing)
  • 3D Laser Cladding

Suorakerrostuksen etuja ovat lähes rajoittamaton tulostusalueen koko ja mahdollisuus käyttää tulostusalustana perinteisillä menetelmillä valmistettuja aihioita, kuten vaikkapa putkea tai jopa valmista koneenosaa. Tekniikka soveltuu hyvin pinnoitus- ja muihin teollisuuden korjaus ja kunnostustöihin. Materiaalia säästyy, kun aihion päälle tulostetaan vain haluttu muoto. Tarvetta tämän tyyppisille sovelluksille löytyy ainakin prosessi- ja energiateollisuudesta.

Kuva 1. Kappaleeseen lisättyä muotoa suorakerrostuksen avulla. (Lähde: Formnext 2017)

Lankasyöttöisen laser-suorakerrostuksen etuja verrattuna jauheeseen pohjautuviin järjestelmiin ovat puhtaampi toimintaympäristö, pienemmät raaka-aineen (langan) tuotantokustannukset, ympäristöystävällisempi raaka-ainevalmistus ja korkeampi tuottavuus. Lankasyöttöisellä suorakerrostuksella valmistetut kappaleet eivät ole yhtä tarkkoja kuin jauhesyöttöisillä menetelmillä valmistetut. Yleensäkin suorakerrostusmenetelmät häviävät mittatarkkuudessa jauhepetimenetelmille.

Osana Savonia-ammattikorkeakoulun LIVA-hanketta on aiemmin tutkittu lankasyöttöisen suorakerrostusmenetelmän soveltuvuutta metallikappaleiden valmistamiseen. Aihealueen tutkimusta on tehnyt Kai Perttola diplomityössään: ”Soveltuvuustutkimus metallikappaleiden lisäävästä valmistuksesta (lankasyöttöinen suorakerrostus)”, linkki työhön: http://urn.fi/URN:NBN:fi-fe201708298260. Perttolan tutkimus koostui kirjallisuuskatsauksesta ja käytännön osuudesta, jossa valmistettiin metallikappaleita Savonian CMT-hitsauslaitteistoa hyödyntävällä suorakerrostusmenetelmällä. Suorakerrostusmenetelmällä valmistettiin erilaisia koekappaleita ja standardin SFS 3475 mukaisia vetokoesauvoja. Sauvoja valmistettiin sekä kuormitussuuntaan että kohtisuoraan kuormitussuuntaan nähden. Vetokokeen tulokset osoittivat, että kuormitussuunnan mukaisesti valmistetuilla sauvoilla on suurempi kuormankantokyky kuin kuormitussuuntaa vastaan valmistetuilla sauvoilla.

Kuva 2. Savonian CMT-suorakerrostuksella valmistettu koekappale

Metallien suorakerrostukseen on olemassa laitteita sekä kokonaisten järjestelmien että erillisten tulostuspäiden muodossa. Kuten missä tahansa 3D-tulostimessa, myös suorakerrostuskoneissa on prosessinmukainen tulostuspää, tulostusalusta ja muut tarvittavat lisävarusteet, kuten suojakaasujärjestelmä ja langan/jauheensyöttölaitteisto.

Valmiit koneet mahdollistavat helpommin muun muassa erikoismetallien, kuten titaanin 3D-tulostamisen, sillä tällaiset materiaalit vaativat puhtaan suojakaasun ympäröivän tilan. Ilman sisältämät happi ja typpi sekoitettuna suojakaasuihin aiheuttavat virheitä suojakaasun käyttöä vaativissa tulosteissa. Nämä laitteet kuitenkin ovat suurikokoisia ja kohtuullisen kalliita, eivätkä niiden tulostusalueet ole järin suuria.

Suorakerrostuspäät ovat laitteita, jotka ovat suunniteltu käytettäväksi olemassa olevien käsivarsirobottien, tai moniakselisten käsittelylaitteiden jatkeena. Tulostuspäät ovat verrattain halpoja verrattuna valmiiseen suljettuun järjestelmään. Lankasyöttöisten päiden (johon kuuluu rungon lisäksi optiikka ja langansyöttö) hinnat alkavat noin 50 000-60 000 eurosta, kun taas suljetun järjestelmän hinta voi olla kymmenen kertaa suurempi. Niiden etuna on hinnan lisäksi suuri tulostusalueen koko, jota rajoittaa vain robotin tai käsittelylaitteen ulottuvuus. Suorakerrostuspäähän kuuluu laseroptiikka, lisäaineen syöttö ja mahdollisesti jäähdytys, tai monitorointilisälaitteita.

Tulostuspäitä, kuten suljettuja järjestelmiäkin on niin lanka- kuin jauhesyöttöisinä. Lankasyöttöinen valokaariprosessi tarkoittaa pelkkää kaarihitsausta aivan tavallisilla hitsauslaitteilla, jolloin mistään tulostuspäästäkään ei tarvitse puhua, sellaisen ollessa pelkkä hitsauspoltin. Laseriin tai elektronisuihkuun perustuva lankasyöttöinen suorakerrostus pohjautuu puolestaan lisäaineelliseen sädehitsaukseen. Jauhesyöttöinen tulostus taas on hyvin vastaavanlainen kuin jauhepetimenetelmät, ainoastaan jauhe syötetään työstöpäästä säteen tielle, kun taas jauhepetimenetelmässä jauhe levitetään tasaiseksi kerrokseksi tulostusalustalle ennen laserointia.

Kuva 3. Lankasyöttöisellä suorakerrostusprosessilla tulostettuja kappaleita. (Lähde: Formnext 2018)

Tulostuspäät voivat olla myös modulaarisia: esimerkiksi Trumpfilla on suorakerrostuspää, jossa yhteen optiikkaan käy useita eri syöttöpäitä eri käyttötarkoituksiin. Periaate on vastaava kuin tasoleikkauskoneissa: ruuvataan työstöpäähän eri ainevahvuutta/materiaalia varten eri suuttimia. Jauhepohjaisilla työstöpäillä on mahdollista tulostaa tarkkoja piirteitä ohuilla seinämävahvuuksilla, tai myös paksumpia seinämävahvuuksia kuten langalla. Jauhepään käyttö on siinä mielessä monipuolisempi, mutta kuten aiemmin mainittu, se on lankaprosessiin verrattuna kalliimpi ja hankalampi käsitellä.

Myös muoveja ja muita materiaaleja voi 3D-tulostaa robotisoidusti. Tarvitaan vain robottikäsivarren jatkeeksi siihen soveltuva työstöpää, kuten granulaatti- tai filamenttiekstruuderi. Tai vaikkapa betonipursotin. Betonia varten kaupallisia sovelluksia on toistaiseksi hyvin pitkälti olematon määrä markkinoilla, mutta muovin pursotukseen soveltuvien robottiekstruudereiden kohdalla tilanne on sentään parempi. Hinnat alkavat muovilaitteilla noin viidestä tuhannesta eurosta ja alan toimijoita ovat mm. Herz ja Dyze Design.

Kuva 4. Robotisoitua muovin 3D-tulostamista ABB-robotilla ja Dyze Design -ekstruuderilla

Kuten olettaa sopii, ei tämäkään 3D-tulostuksen osa-alue ole ”valmis kappale nappia painamalla” –tyyppinen prosessi. Haasteena ei niinkään ole materiaalit vaan prosessin hallinta, jopa vielä enemmän kuin valmiiksi markkinoilla olevilla 3D-tulostimilla. Ns. “laatikkomalliset” 3D-tulostimet ovat käytännössä valmiita ratkaisuja, joihin on saatavilla valmiita parametriasetuksia tiettyä materiaalia varten ja suunnittelua varten on jopa päteviä ohjelmistojakin. Automaatiota niistäkin laitteista puuttuu vielä paljon, mutta laitteet on kuitenkin suunniteltu vain yhtä käyttötarkoitusta varten.

Robotisoituihin prosesseihin vaaditaan yleensä soveltuva ohjelmisto robotin offline-ohjelmointia varten. Hitsausta varten on olemassa sovelluksia, joista useat pohjautuvat 3D-simulointiohjelmistojen alustalle. Näistä ohjelmistoista on kehitetty myös johdannaisia, jotka tukevat myös 3D-tulostamista. Valmiita parametrikirjastoja ei silti tahdo vielä löytyä, joten viimeistellyin ohjelmistokaan ei hyvän raudan lisäksi tee vielä autuaaksi. Suorakerrostusparametreissa täytyy huomioida samoja asioita, kuin muissakin 3D-tulostusprosesseissa, sekä samalla myös hitsaukseen liittyvät vaatimukset. Savonialla vastikään käynnistyneessä 3D-tulostusympäristön investointi- & kehityshankkeessa on tavoitteena tutkia tätä(kin) prosessia ja jakaa saatuja tutkimustuloksia eteenpäin.

Kuva 5. Formnext 2018 -messuilla esillä olleita suorakerrostuspäitä eri valmistajilta. Valmistajittain järjestyksessä: GTV, Fraunhofer (kuvat 2-5), Trumpf

 

Simo Mäkinen
TKI-asiantuntija (suorakerrostusmenetelmät, LIVA-hanke)

Joni Andersin
Projekti-insinööri (robotiikka, LIVA-hanke)

 

 

Formnext 2018- messujen tilannekatsaus, osa 1/2

Formnext on Euroopan merkittävin ja yksi maailman suurimmista vuosittain järjestettävistä lisäävään valmistukseen (3D-tulostus) keskittyvistä tapahtumista. Osallistuimme tapahtumaan LIVA (Lisäävä Valmistus Pohjois-Savossa) –hankkeeseen liittyen. LIVAssa on käynnistelty lisäävän valmistuksen toimintaympäristöä Savonialle ja uusimman tiedon hankkiminen on olennainen osa tätä prosessia. Tämän vuoden Formnext oli jälleen kerran edellistä vuotta suurempi, ja näytteilleasettajien joukossa olivat käytännössä kaikki maailman merkittävimmät laitevalmistajat ja palveluntuottajat.

Kävijät olivat edellisvuosien tapaan ympäri maailmaa: 49% vierailijoista tuli Saksan ulkopuolelta yhteensä 32 eri maasta. Seuraavassa taulukossa on kuvattu tapahtuman kasvamista viimeisen muutaman vuoden ajalta. Ensi vuodelle ennakoidaan taas edellistä suurempaa tapahtumaa ja tapahtuma siirtyykin uusiin halleihin tilapuutteen vuoksi.

Taulukko 1. Formnext -tapahtuman kehitystä viimeisten vuosien aikana

Varjopuolena tapahtuman kasvussa on se, että näytteilleasettajia ja nähtävää on jo niin paljon että esillä oleviin osastoihin ei enää ehdi tutustumaan vaikka messuilla viettäisi koko viikon. Niinpä silmiin osuikin joka päivä jotain uutta, vaikka olevinaan käveli samoja käytäviä pitkin. Emme olleet tuntemuksiemme kanssa yksin, vaan kuulimme saman asian myös useilta muilta messuvierailijoilta.

GE Additive (yksi maailman suurimmista toimijoista 3D-tulostuksen saralla) esitteli yhteistyössä HRE Wheelsin kanssa kehitettyä titaanista valmistettua vannetta. Perinteisesti vanteet valmistetaan alumiinista koneistamalla, jolloin suuri osa käytetystä materiaalista (80%!) menee hukkaan. Titaanilla on alumiinia paremmat materiaaliominaisuudet mutta se on myös huomattavasti arvokkaampi materiaali, joten valmistaminen kuutiosta koneistamalla ei ole kustannuksiltaan järkevää. 3D-tulostuksen avulla materiaalihukka on vain 5% jolloin päästään jo valmistuskustannuksiltaan paremmalle tasolle. Kustannuksista puhuttaessa on toki selvää, että titaanivanteet eivät ole tulossa ”kansanautojen” varusteeksi. Tässäkin tapauksessa kyseessä oli McLaren P1.

Kuva 1. HRE Performance Wheel: Pyörän uudelleen keksimistä GE:n tapaan

Metallitulostus oli muutenkin messuilla vahvasti esillä sillä viimeisen muutaman vuoden aikana markkinoille on tullut kymmeniä uusia laitevalmistajia. Metallitulostuksen tarjonnasta ja uutuuksista Formnext –messuilla kirjoitamme tarkemmin seuraavassa blogikirjoituksessa.

Nesteen fotopolymerisointiin, eli valokovetukseen perustuvien laitteiden osalta on tapahtunut viimeisen vuoden aikana paljon, ja se näkyi myös messuilla. Laitteistovalmistajia on tullut markkinoille entistä enemmän, laitteiden nopeudet ovat kasvaneet ja materiaalimäärä monipuolistunut entisestään. Markkinoilla on nyt useita valmistajia jotka lupaavat tulostusnopeudeksi 1 cm/min tai yli. Vaikka pääosin UV-kovettuvasta resiinistä valmistettavat 3D-tulosteet eivät sovellukaan suoraan auringonvalolle altistuviin käyttökohteisiin, valmistajilla on myös paremmin UV-säteilyä kestäviä materiaalia tarjolla. Käyttökohteita löytyy runsaasti eri aloilta, mm. eri koneiden ja laitteiden sisätiloihin sijoittuvissa komponenteissa.

Muutamia vuosia markkinoilla ollut Carbon 3D oli ensimmäistä kertaa Formnext –messuilla mukana ja saapunut nyt myös Eurooppaan. Ensimmäinen palveluntarjoaja Euroopassa on Oerlikon AM joka osti muutama vuosi sitten Citim:in. Yrityksellä on käytössään kolmannen osapuolen toimittama automatisoitu ratkaisu (3 Carbon tulostinta, kappaleenkäsittelyrobotti, pesulaite), joista Carbon on toimittanut järjestelmään vain tulostimet ja pesurin.

Automatisoidussa ratkaisussa tulostusalustassa on NFC-piiri, jonka avulla pesuri tunnistaa alustassa kiinni olevat kappaleet ja valitsee sopivan pesuohjelman optimaalisen tuloksen (ja ajankäytön) saavuttamiseksi. Jokin tämän kaltainen täysautomaattinen ratkaisu on tarpeen, jos SLA-menetelmällä aikoo oikeasti valmistaa suuria määriä kappaleita. Esimerkiksi Adidas on ilmoittanut valmistavansa Carbonin laitteilla satoja tuhansia kenkien välipohjia vuoden 2018 loppuun mennessä. Suuret tulostusmäärät edellyttävät (ainakin länsimaissa) automatisoituja ratkaisuja kappaleiden liikutteluun.

Kuva 2. Carbon 3D ja automatisoitu ratkaisu. Messuesittelijöillä oli jaloissaan Adidaksen 3D-tulostetut lenkkarit

Myös FIT AG (suuri saksalainen 3D-tulostuspalveluntarjoaja teollisuudelle) on hankkinut useita teollisen mittakaavan SLA-tulostimia, joilla se tarjoaa valmistuspalvelua yrityksille mm. autoteollisuudessa, lentokoneteollisuudessa ja terveysalalla. FIT käyttää 3DSystemsin laitteita, joissa suurimmissa tulostusalue on 1500x750x550 mm.

Messuilla oli esillä useita moniväritulostukseen soveltuvia laitteita eri valmistusmenetelmiin perustuen. Savoniankin kannalta kiinnostava multimateriaalitulostus monivärisenä näyttäisi toistaiseksi olevan rajattu lähinnä Stratasysin laitteisiin. Valmistajalta on tullut markkinoille J735 laitteisto, joka on hieman aiempaa J750 mallia pienemmällä tulostusalueella, mutta muuten tekniikaltaan sama. Tulostusalueen pieneneminen näkyy paitsi laitekoossa, myös laitteen hinnassa (suomessa noin 200 000 €).

Muita moniväritulostusta tarjoavia yrityksiä olivat mm. Mimaki 10 miljoonan värin pintavärjäyksellä sekä Rize ja XYZ Printing joiden laitteissa värjätään koko kappale. Mimakin 3DUJ-553 -tulostimen toiminta perustuu inkjet – menetelmään, kun taas Rizen ja XYZ Printing –valmistajien järjestelmissä hyödynnetään pursottavan menetelmän ja inkjet –menetelmän sekoitusta. Tulevaisuudessa Rizen järjestelmä voi värien lisäksi myös mahdollistaa 3D-tulosteille esimerkiksi sähkönjohtavuuteen vaikuttavia ominaisuuksia. Niin Stratasysin, Mimakin kuin Rizenkin laitteissa täytyy käyttää laitevalmistajien omia materiaaleja.

Kuva 3. Laitevalmistajien esimerkkikappaleita vasemmalta oikealle: Stratasys, Mimaki, Rize, XYZ Printing

Muovitulostuksen osalta messuilla oli toki muitakin uutuuksia. Jauhepetitekniikka on tällä hetkellä yleisimpiä teollisuuden käyttämiä lisäävän valmistuksen menetelmiä, jossa laitemarkkinoita ovat dominoineet muutamat suuret yritykset. Tilanne on muuttumassa, sillä muutaman keskeisen patentin rauettua tarjolle on tullut enenevissä määrin uusi toimijoita, myös teollisen mittakaavan laitteistoihin liittyen. Tämä tarkoittaa väistämättä hintojen laskua. Esimerkkinä pienemmän tulostusalueen omaavista halvemmista laitteista on Puolalaisen Sinterit yrityksen Lisa –laitteet, joiden hintaluokka on noin 8-20 k€ riippuen laitteen koosta ja lisälaitteista. Myös Formlabsilta on tulossa saman kokoluokan, paljon mainostettu Formlabs Fuse –laitteisto, mutta sen markkinoille tulo on lykkääntynyt 2019 vuoden loppuun.

Kuva 4. Sinterit Lisa 2 Pro ja Formlabs Fuse

Alan suuret toimijat eivät ole jääneet lepäämään laakereillaan vaan uusia toiminnallisuuksia ja innovaatioita esitellään jatkuvasti. EOS, yksi alan pioneereistä, mainosti messuilla tulossa olevaa ”miljoonan laserin” järjestelmäänsä polymeeripuolelle. EOS käyttää tekniikasta nimeä LaserProFusion, ja kertoo sen korvaavan ruiskuvalumenetelmän monissa käyttökohteissa. Järjestelmässä on yksittäisen laserin sijaan miljoona diodilaseria (teho yhteensä 5 kW) jotka peittävät koko tulostuspedin alueen kerralla. Lasereista aktivoidaan vain ne, joiden tulostusalueella on osan geometria nopeuttaen merkittävästi kerroskohtaista valotusaikaa yksittäisten lasereiden käyttöön verrattuna. Myyntiin järjestelmä tulee ilmeisesti muutaman vuoden kuluttua. Valitettavasti tämän enempää tietoa valmistaja ei vielä järjestelmästä kertonut.

Kilpailu pursotustekniikkaan perustuvien laitevalmistajien kesken on ollut viime vuodet kiivasta, mikä on ajanut lukuisia laitevalmistajia erikoistumaan haastavimpiin materiaaleihin tai hakemaan kilpailukykyä ja parempaa katetta teknisten innovaatioiden kautta.

Esillä oli useita pursotustekniikkaan perustuvia korkeamman lämpötilan 3D-tulostimia, joiden tähtäimessä ovat tekniset erikoismuovit kuten PEEK ja ULTEM. Etuna materiaaleilla on huomattavasti “perusmuoveja” paremmat materiaaliominaisuudet mutta niiden valmistuksessa vaaditaan suuttimen lämpötilan (n. 450-500 °C) lisäksi lämmitettyä tulostuskammiota &  tulostusalustaa ja huomattavasti parempaa prosessinhallintaa. Laitteistojen hinnat liikkuvat 30-300 k€ välillä, ja niissä yleisesti näkyviä ominaisuuksia ovat vesijäähdytetyt, modulaariset tulostuspäät, materiaalin kuivatusjärjestelmät sekä tulostusalustaan liittyvät tekniset ratkaisut kuten automaattiset tai puoliautomaattiset alustan kalibroinnit.  Suomalainen Minifactory oli yksi esillä olleista laitevalmistajista tarjoten laitetta ULTEM, PEEK, PEKK ja PPSU -polymeerien 3D-tulostukseen.

Muita esillä olleita teknisiä ratkaisuja pursotusmenetelmän parantamiseksi olivat hihnamaiset tulostusalustat, 45 asteen kulmassa tulostus sekä tulostuspäiden lukumäärän kasvaminen laitteissa.

Aiempina vuosina suuremmat valmistajat (mm. Stratasys) ovat esitelleet laitteissaan hihnamaisia tulostusalustoja, jotka mahdollistavat sarjatuotannon. Nyt myös pienemmillä toimijoilla oli esillä liikkuvia tulostushihnoja. Kahdella esillä olleella valmistajalla (Blackbelt, RobotFactory) tämä toiminnallisuus oli yhdistetty 45 asteen kulmassa toimivaan tulostuspäähän. Tämä mahdollistaa periaatteessa ”jatkuvan tulostuksen”, eli yhteen suuntaan loputtoman pitkän kappaleen valmistamisen. Toki fysiikan lait ja tekniset rajoitukset rajaavat osan valmistuspituuden esimerkiksi kuljetusjärjestelmän pituuteen.

Esillä oli myös ratkaisuja, joissa pursottavassa 3D-tulostimessa oli useita itsenäisesti toimivia tulostuspäitä (kuitenkin samalla akselilla). Tällä tarjotaan mahdollisuutta valmistaa useita (samanlaisia) kappaleita samanaikaisesti, eli tähtäimenä siinäkin piensarjatuotanto. Yhdistettynä hihnamaiseen tulostusalustaan tämänkaltaisella ratkaisulla olisikin mahdollista kasvattaa tulostuksen sarjakokoa huomattavasti. Useiden valmistajien ratkaisuissa tulostuspäät olivat modulaarisia, eli ne pystyy halutessaan ottamaan pois törmäysten välttämiseksi suurten kappaleiden tulostuksen yhteydessä.

Kuva 5. Vasemmalla Minifactory Ultra, keskellä Blackbeltin liikkuvalla tulostusalustalla varustettu 3D-tulostin ja oikealla Stacker neljällä tulostuspäällä varustettuna

 

Muovin lisäävä valmistus ja materiaaliominaisuudet: SLS vs MJF

Muovi on yleisin lisäävän valmistuksen materiaali. Teollisuuden tarpeisiin 3D-tulostetut muovikappaleet valmistetaan yleisimmin jauhepetimenetelmällä, standardin mukaiselta termiltään ”Powder Bed Fusion”. Yleisin käytetty muovimateriaali em. menetelmässä on Polyamidi (PA), joskin sitä kutsutaan yleisesti Nyloniksi.

Polyamidit ovat yleisesti ottaen lujia, jäykkiä, kulutuksen-, iskun- ja kemikaalinkestäviä materiaaleja. Nylonien heikkouksiin kuuluu materiaalin taipumus imeä itseensä kosteutta enemmän kuin monet muut muovit, jolloin taas sen mekaaniset ominaisuudet kärsivät. Pinnoittamalla erilaisilla suoja-aineilla voidaan näiden pintojen ominaisuuksia parantaa kosteutta paremmin hylkiväksi. Pinnoitteiden avulla voidaan pinnat tehdä myös paremmin UV-säteilyä kestäviksi tai puhtaampana pidettäviksi.
Nylonit voidaan jakaa kahteen ryhmään rakenteensa perusteella. Toisessa ryhmässä polyamidit muodostuvat vain yhden tyyppisistä monomeereistä, kuten PA6, PA11 tai PA12. Toisessa ryhmässä molekyyliketjut muodostuvat kahdesta erilaisesta monomeerista (PA66, PA69 tai PA610).

Yleisin jauhepetimenetelmässä käytettävä polyamidi on PA12. Tämä katsaus pohjautuu LIVA -hankkeessa tehtyyn tutkimukseen, ja siinä verrataan keskenään kolmea eri testisarjaa joissa materiaalina on PA12.

Kuva 1. PA12 on yleinen materiaali teollisuuden työkalukomponenteissa. Kuvassa vasemmalla robotin tarttuja, oikealla tartuntapään imuohjain. Lähde: Formnext 2017

Taulukossa 1 on esitetty muutaman tämän ryhmän muovin mekaanisia ominaisuuksia. Valmistusmenetelmänä näissä on lähteen mukaan ollut ruiskuvalu.

Taulukko 1. Ruiskuvalettujen polyamidien mekaanisia ominaisuuksia. (Lähde: Valuatlas, http://www.valuatlas.fi/tietomat/docs/plastics_PA_FI.pdf)

Muovikappaleiden mekaanisia ominaisuuksia tutkittaessa on myös muistettava lujuusominaisuuksien riippuvuus lämpötilasta. Lasittumislämpötilalla tarkoitetaan lämpötilaa, jonka yläpuolella amorfinen polymeeri muuttuu viskoosiksi sulaksi tai kumimaiseksi materiaaliksi. Useiden kirjallisuuslähteiden mukaan lasittumislämpötila esitetään muutosalueen keskikohtana lasittumislämpötila-alueella. Tekniikan kemian oppikirjan tämän muutoslämpötilan alapuolella amorfiset polymeerit ja kiteisten polymeerien amorfiset osat ovat kovia ja lasimaisia aineita. Kuvassa 2 havainnollistuu erittäin selkeästi lasittumislämpötila, jossa esitetään kestomuovin lujuusominaisuuksien riippuvuus lämpötilasta.

Kuva 2. Kestomuovin lujuusominaisuuksien riippuvuus lämpötilasta. (Lähde: Konetekniikan materiaalioppi, Koivisto & ym., 2008)

Tutkimuksessa perehdyttiin PA12 muovista valmistettujen kappaleiden materiaaliominaisuuksiin, kun valmistuksessa käytettiin seuraavia lisäävän valmistuksen menetelmiä:

  1. Multi Jet Fusion (MJF)
    HP:n kehittämä 3D-tulostusmenetelmä joka on yhdistelmä jauhepeti- ja sidosaineruiskutusmenetelmiä. Kappale valmistetaan jauhepedissä mutta lasersulatuksen sijaan sijaan jauhepetiin ruiskutetaan sidosainetta ja kohdistetaan lämpöenergiaa infrapunavalon avulla.
  2. Selective Laser Sintering (SLS)
    Selective Laser Sintering (SLS), on yleisin käytössä oleva jauhepetimenetelmä muovituotteiden valmistuksessa.

Näytesarjat valmistettiin suomalaisten 3D-tulostuspalveluntarjoajien toimesta ja ne liittyvät laajempaan testauskokonaisuuteen, jossa tutkitaan 3D-tulostettujen materiaalien soveltuvuutta ulkokäytössä.
SLS –menetelmällä valmistettujen kappaleiden tiedettiin ennaltakäsin olevan rakenteeltaan huokoisia, joten ne tilattiin pinnoitettuna.
MJF –menetelmällä valmistettujen kappaleiden huokoisuudesta ei ollut varmuutta joten niitä tilattiin kaksi sarjaa, toinen pinnoitettuna ja toinen pinnoittamattomana.

Testisarjat (5 kpl / sarja) olivat:
– Sarja A: pinnoittamaton MJF (balanced mode, natural cooling)
– Sarja B: värjätty ja pinnoitettu MJF (vettä hylkivä pinnoite, balanced mode, fast cooling)
– Sarja C: pinnoitettu SLS (vettä hylkivä tfc-mikropinnoite)

Seuraavassa kuvassa on esitetty näytesarjat vetokokeiden jälkeen.

Kuva 3. Tutkitut näytteet vetokokeen jälkeen.

Testauksen tavoitteena oli siis verrata HP:n Multi Jet Fusion (MJF) menetelmällä valmistettuja kappaleita Selective Laser Sintering (SLS) menetelmällä valmistettuihin kappaleisiin. Testaus tapahtui huoneenlämmössä (n. 20 °C)

Taulukko 2. Kovuusmittaukset, murtolujuus ja murtovenymä, * = PA12 ruiskuvalu.

Testisarjojen perusteella voidaan todeta että Shore D –kovuusmittauksissa tai murtolujuudessa ei ole merkittävää eroa MJF ja SLS –menetelmien välillä. 3D-tulostettujen kappaleiden Shore D –kovuus on suurempi kuin ruiskuvaletulla PA12 –materiaalilla mutta murtolujuus on samaa luokkaa.

Murtovenymän osalta näkyy selvä ero MJF ja SLS menetelmien välillä. Ruiskuvaluun verrattuna lukemat ovat aivan eri luokkaa, eivätkä ole siten järkevässä mielessä vertailukelpoisia. Tähän vaikuttaa luonnollisesti valmistustekniikka; 3D-tulostuksessa valmistus tapahtuu kerroksittain toisin kuin ruiskuvalussa.

Kuva 4. Kuva vetosauvojen mikrorakenteesta (200x suurennos).

Tutkimus jatkuu

Testauksen seuraavissa vaiheissa tutkitaan uv-säteilyn, kosteuden ja kylmyyden vaikutuksia materiaaliominaisuuksiin. Polymeerit ovat tunnettuja ”heikosta” UV:n- ja kosteuden kestävyydestä. Muovitulosteiden pakkasenkestosta puolestaan ei juurikaan ole tietoa saatavilla. UV-testin pituudeksi määritettiin 1600 tuntia, joten testituloksia niiltä osin julkaistaan vasta vuoden loppupuolella.

 

Mika Mäkinen
Lehtori

Arvo Tiilikainen
Projekti-insinööri

Antti Alonen
TKI-asiantuntija
http://alvo.savonia.fi

 

Jätemuovista ja kotimaisesta puusta 3D-tulostusmateriaaleiksi

Muovin ympärillä käytävä keskustelu käy vilkkaana. Muovia tulisi käyttää vähemmän ja olemassa olevaa muovia rohkaistaan kierrättämään aiempaa tehokkaammin. Mitäpä jos vanhoista materiaalin pursotusmenetelmällä tuotetuista kappaleista voisi valmistaa uutta tulostusmateriaalia – tai jopa kotitalouksien jätemuovista? Tämän mahdollistavia laitteita on saapunut markkinoille, ja osa laitteista on niinkin edullisia, että jopa kotitulostaja voi sellaisen hankkia joutumatta vararikkoon. Entä onko tällaisen kierrätysmuovista valmistetun tulostusmateriaalin käyttö turvallista?

Näiden kysymysten ympärillä työskentelyn lisäksi kesän aikana Savonialla testattiin kotimaista puuperäistä tuotetta – eli selluloosakuidun ja PLA-muovin sekoituksesta valmistettua UPM Formi-tulostusfilamenttia. Käytännöllisyyden lisäksi tutkittiin kyseisen materiaalin tulostuksen aikaisia päästötasoja ja verrattiin niitä yleisimpiin muovifilamentteihin sekä ulkomaisen kilpailijan puufilamenttiin. Tutkimus liittyi Pohjois-Savon liiton rahoittamaan Lisäävä Valmistus Pohjois-Savossa (LIVA) -hankkeeseen.

Korsi, joka katkaisi hiilivetyketjun selän

Muovin kierrätyksessä uudeksi materiaalin pursotusmenetelmän tulostusmateriaaliksi se murskataan, sulatetaan ja vedetään uudeksi tulostuslangaksi. Muovien selkärankana toimii toistuva hiilivetyketju eli polymeerirakenne, joka voi katkeilla ja kärsiä muutoksista, kuten hapettumisesta, sitä kuumennettaessa. Näiden muutosten lisäksi muovissa olevat lisäaineet ja epäpuhtaudet voivat haihtua tai rikastua, ja kaikkien muutosten summana muovin kemialliset ja fysikaaliset ominaisuudet voivat muuttua.

Kuva 1. Tutkimukseen valikoitu ketsuppipullo

Tutkimus alkoi näiden pohjatietojen varassa ja kotitalousperäiseksi jätemuoviksi päätyi kotimainen ketsuppipullo, joka oli valmistettu PET-muovista. Pullojen korkit puolestaan olivat PP-muovia. Ketsuppipullojen lisäksi kierrätettyä tulostusmateriaalia tuotettiin materiaalinvalmistajalta ostetusta PET-muovista, perinteisestä PLA-muovista sekä sivuvirta-PLA-muovista, eli periaatteessa jo kertaalleen kierrätetystä PLA-muovista.

Itä-Suomen yliopiston tutkija Samuel Hartikainen liittyi myös tutkimukseen, ja hän tutkii 3D-tulostettujen kappaleiden sekä muovifilamenttien kemiallista koostumusta SIB Labsin 2D-GCMS-analytiikalla. Sen avulla voidaan saada selville muovissa tapahtuvat kemialliset muutokset, kun taas Savonialla tehdyissä mittauksissa keskitytään tulostuksen aikaisiin kemiallisiin ja hiukkasmaisiin päästötasoihin.

Kuva 2. SIB Labsin 2D-GCMS-analyysilaite

Kohti kokeellista osuutta

Koeasettelu oli yksinkertainen: mitataan ensin puhtaiden eli materiaalinvalmistajilta ostettujen filamenttien tulostuksen aikaiset alkupäästötasot. Kierrätettävät muovikappaleet toimitetaan tutkimusyhteistyössä mukana olevaan Arcada-ammattikorkeakouluun, jossa uuden filamentin valmistus tapahtuu. Tämän jälkeen päästötasot mitataan kierrätetyistä materiaaleista ja niitä verrataan puhtaiden materiaalien alkutasoihin.

Teoriassa materiaalin kierrätys uudeksi filamentiksi on siis aika suoraviivaista. Käytännössä uudelleen lämpömuovattavien muovimateriaalien kyky sietää kyseistä käsittelyä on vaihteleva ja suoraa vastausta siihen, monestiko PLA- ja PET-muovit sietävät lämpömuovausta, ei ole. Täten eteneminen tapahtui ”yhden käden taktiikalla” ja kierrätystoistojen määräksi valittiin 1 ja 5 kertaa. Kaupallisista 3D-tulostusmateriaaleista valmistettiin siis kaksi rullaa uutta materiaalia, toinen rulla on lämpömuovattu uudeksi langaksi kerran, toinen viidesti. Jätemuovi kierrätettiin uudeksi filamentiksi vain kerran.

Kuva 3. Arcada-ammattikorkeakoulun 3D-tulostusfilamentin valmistuslaite

Kaiken takana on kemia

Kerran lämpömuovatut kaupalliset PLA- ja PET-muovit toimivat, kuten pitikin. Viisi lämpökiertoa puolestaan oli materiaaleille liikaa sillä filamenteistä oli tullut liian hauraita sekä kovettuneita tulostettavaksi. Kierrätysmateriaalin hyödyntäminen, eli filamentin valmistaminen muovipulloista epäonnistui, sillä pulloissa käytetty PET-muovi oli ilmeisesti ”puhallettavaa” tyyppiä, jolloin se sulaessaan käyttäytyy lähes nesteen tavoin – ei tahnamaisesti, kuten tulostettavat muovit. Tulostusfilamentin valmistaminen PP-pullonkorkeista sen sijaan onnistui, joskin materiaalina PP on haastava tulostettava suuresta kutistumasta johtuen.

Sanotaan, että tutkimuksissa edistyminen ilman epäonnistumisia on sattumaa. Arcada-ammattikorkeakoulun avustuksella materiaalivalintoihin tehtiin muutoksia ja tutkimusta päätettiin jatkaa PLA- ja PP-muovien kanssa. Savonian tutkimus jatkuu uusien materiaalien parissa, ja materiaalinäytteistä voi löytyä jotain perin mielenkiintoista – mitä viidesti lämpökäsiteltyjen lankojen rakenteessa tarkalleen tapahtui?

Tutkimusten lopulliset tulokset julkaistaan Samuel Hartikaisen ja Antti Väisäsen väitöskirja-artikkeleissa, joissa käsitellään kierrätysmuovien kemiaa ja aiheeseen liittyviä ympäristö- ja terveysriskejä.

Kuva 4. Onnistuneet PLA- (harmaa) ja PP-filamentit (musta)

Puujakkara ja pienhiukkaset

Geometrian ja materiaalin tulostettavuuden testausta varten UPM Formista tulostettiin ensin miniatyyrijakkara – kooltaan sopiva vaikka nukkekotiin. Koska kaikki toimi odotetusti, malli skaalattiin vastaamaan todellista elämää. Lopputuloksena – noin 30 tunnin tulostuksen jälkeen – oli ihan oikea ”puujakkara”.

Päästömittauskokeessa UPM Formi pärjäsi myös hyvin. Kokeessa mitattiin tulostuksen aikaiset haihtuvien orgaanisten yhdisteiden eli VOC-yhdisteiden, formaldehydin ja nanohiukkasten pitoisuudet. Vertailukohteina käytettiin jo aiemmin tutkittujen ja vähäpäästöisiksi todettujen PLA-muovin sekä kilpailevan tuotteen, Formfutura EasyWood-filamentin päästötasoja. Materiaalien päästötasot on esitetty seuraavassa taulukossa.

Taulukko 1. Materiaalien VOC-, formaldehydi- ja nanohiukkasten päästötasot

VOC-päästöjen suhteen UPM Formin, EasyWood-filamentin ja PLA-muovin välillä ei ole juurikaan eroa ja tulostuksen aikaiset pitoisuudet ovat matalia. Sekä EasyWood-filamentin että UPM Formin formaldehydipäästöt olivat PLA-muovia aavistuksen suuremmat, mutta siitä huolimatta erittäin pienet ja kaukana yhdisteeseen liittyvistä turvallisuusrajoista. Nanohiukkasten osalta UPM Formi päihitti EasyWood-filamentin vähäpäästöisyydellään, mutta hävisi niukasti puhtaalle PLA-muoville. Yhteenvetona: UPM Formi vaikuttaa hyvältä 3D-tulostusmateriaalilta niin käytettävyydeltään kuin vähäpäästöisyydeltäänkin.

Kuva 5. ”Suomalaisesta puusta” 3D-tulostettu jakkara

Linkit
SIB Labs: https://www.uef.fi/fi/web/siblabs
UPM Formi: https://www.upmformi.com/Pages/default.aspx

Antti Väisänen
Projektityöntekijä
Savonia-ammattikorkeakoulu, LIVA-hanke

Kokemuksia alumiinin 3D-tulostuksesta

Alumiini on tällä hetkellä yksi yleisimmistä 3D-tulostettavista metallimateriaaleista. Sen käyttö on lisääntynyt erityisesti piensarjatuotannossa alumiinivalujen korvaajana. Taustalla on materiaaliominaisuuksien lisäksi luonnollisesti myös kustannustekijät. Alumiinijauhe on metallijauheista edullisin ja sen valmistusnopeudet ovat suurempia kuin esimerkiksi vaikka teräksellä. Yleisin jauhepetitulostuksessa käytetty alumiiniseos on AlSi10Mg.

Tässä kirjoituksessa kuvataan alumiinin 3D-tulostukseen liittyviä asioita yleisellä tasolla, kun kyseessä on jauhepetimenetelmään perustuva 3D-tulostin. Jauhepetimenetelmä on lisäävän valmistuksen prosessi jossa kappale valmistetaan inertissä valmistuskammiossa sulattamalla jauhepedin alueita selektiivisesti yhteen kerros kerrokselta. Kyseessä on tällä hetkellä yleisin teollisuuden käyttämä metallin 3D-tulostusmenetelmä. Tarkempi kuvaus menetelmän toiminnasta löytyy esimerkiksi Savonian ”Lisäävän valmistuksen Perusteet” –julkaisusta, sivulta 31. (linkki: http://portal.savonia.fi/amk/fi/tutkimus-ja-kehittaminen/julkaisutoiminta/julkaisut-aloittain/tekniikka-ja-liikenne/lisaavan)

 

Kuva 1. Alumiinin 3D-tulostus käynnissä.

Prosessissa kuvatut työvaiheet ja kuvat ovat peräisin Nivalan Elme Studion 3D-tulostusympäristöstä, jossa Oulun Yliopiston, Kerttu Saalasti -instituutin tulevaisuuden tuotantoteknologiat (FMT) –ryhmän (http://www.oulu.fi/fmt/) asiantuntijat opastivat Savonian 3D-tulostusympäristön henkilökuntaa alumiinin 3D-tulostuksessa. Elme Studiolla on käytössä SLM 280 –metallitulostin ja valmistelevat toimenpiteet tehdään Materialise Magics -ohjelmassa.

Toisin kuin asiaan perehtymättömät usein olettavat, 3D-tulostus (varsinkaan metallin osalta), ei ole aivan niin suoraviivaista että nappia painamalla tulisi valmis kappale ulos. Kyseessä on monivaiheinen prosessi joka vaatii laitteistojen käyttäjältä erityistä osaamista kaikissa prosessin vaiheissa. Metallin jauhepetitekniikassa tulee lisäksi ottaa huomioon työturvallisuusasiat sillä metallitulostuksen raaka-aineena käytettävä jauhe on vaarallista niin hengitettynä kuin nieltynäkin. Lisäksi jotkin yleiset tulostusmateriaalit (esim. alumiini, titaani) reagoivat hapen kanssa ja niiden varomaton käsittely voi aiheuttaa vaaratilanteita tulipalosta räjähdykseen saakka.

Seuraavassa on esitetty yleisellä tasolla alumiinin 3D-tulostusprosessin työvaiheet.

Kuva 2. Alumiinin 3D-tulostusprosessin työvaiheita.

*Työvaiheiden lukumäärä ja järjestys voi vaihdella hieman valmistajakohtaisesti riippuen tulostuslaitteesta ja käytetyistä ohjelmista. Jos 3D-tulostettu materiaali vaihtuu esimerkiksi alumiinistä teräkseen, on kyseessä suurempi työmäärä sillä eri materiaalit eivät saa joutua sekaisin missään vaiheessa prosessia. Tämä tarkoittaa sekä koneen että siihen liittyvien laitteiden (3D-tulostin, seulonta-asema, atex-luokiteltu imuri)  perusteellista puhdistamista.

Valmistusprosessi alkaa muun 3D-tulostuksen tapaan 3D-mallinnuksesta, joka tässä esimerkissä tehtiin Solidworksilla.

Mallinnus on usein suurin ja kallein osa tehtävää työtä, sillä 3D-tulostuksesta saa parhaan hyödyn vain silloin, kun kappale on suunniteltu 3D-tulostuksen hyödyt (ja rajoitukset) silmällä pitäen. Koska 3D-tulostusmenetelmiä on useita ja kaikilla niillä on omia erityispiirteitä, olisi mallintaessa hyvä olla jo etukäteen tiedossa se millä 3D-tulostusmenetelmällä, mistä materiaalista ja missä asennossa kappale valmistetaan. Kappale voidaan mallintaa sopivaan tulostusasentoon jo suunnitteluohjelmassa, mutta yleensä tulostusasento määritellään vasta siivutusohjelmassa.

Kun 3D-malli on tulostukseen kelpaavassa muodossa, siirretään se (yleensä STL-muodossa) siivutusohjelmaan. Tässä tapauksessa ohjelmana on Materialise Magics jossa määritetään kappaleelle sopiva tulostusasento/orientaatio ja suunnitellaan riittävä määrä tukirakenteita tulostusprosessia varten. Kappaleen tulostusasennolla on merkitystä niin pinnanlaadun kuin ylipäätään tulostuksen onnistumisen kannalta. Tulostusasennon määrityksellä pyritään välttämään suuria yhtäjaksoisia pinta-aloja ja pinta-alojen vaihteluja lämpöjännitysten ja äkillisten lämpökuormien välttämiseksi. Yleensä myös pyritään välttämään tulostusasentoa jossa kappaleen suora reuna on samassa linjassa kaavaimen kanssa jauheen tasaisen leviämisen varmistamiseksi.

Toisin kuin muovin 3D-tulostuksen jauhepetimenetelmissä, jauhepedin metallijauhe ei toimi kantavana rakenteena ja sulatettavat rakenteet vaativat tukimateriaalin, jonka päällä liittäminen tapahtuu. Yleisesti ottaen alumiinissa vaaditaan tukirakenne alle 45 asteen kulmissa. Tukirakenteella on myös kappaleen tukemisen lisäksi toinen tehtävä, sillä sen avulla saadaan johdettua lämpöä pois valmistuvasta kappaleesta.

Toisaalta tukirakenteiden poisto on yksi metallitulostuksen työläimpiä vaiheita, joten vaikka ne ovatkin välttämättömiä, tulisi niiden määrä pitää minimissään. Tukirakenteiden tarve määrittää usein paitsi tulostusorientaation, myös kappaleen geometrisia ominaisuuksia. Esimerkiksi reikien muodoissa suositaan usein pisaramaista geometriaa tukirakenteiden välttämiseksi. Alumiinin osalta pyöreiden reikien valmistaminen vaakasuunnassa onnistuu noin 10 mm asti, jonka jälkeen yläpinta alkaa roikkumaan ja menettämään muotoaan.

Kuva 3. Oulun yliopiston Kerttu Saalasti -instituutin, FMT-tutkimusryhmän valmistama esimerkkikappale reikien muodosta ilman tukirakennetta 10mm saakka. Yläpuolella pysty-, alapuolella vaakasuuntainen tulostus.

Todennäköisesti yleisin syy jauhepetimenetelmissä tulostuksen epäonnistumiseen ovat väärin suunnitellut tukirakenteet jotka repevät lämpöjännitysten voimasta irti kappaleesta tai alustasta, tai vääntävät kappaletta ei-toivottuun suuntaan. Tukirakenteiden merkitys korostuu erityisesti teräksellä ja titaanilla, mutta se tulee huomioida kaikessa metallitulostuksessa. Allaolevassa kuvassa näkyvässä testitulostuksessa havaittiin tukimateriaalin lievää repeytymistä alumiinikappaleen osalta hilarakenteen pohjalevyn osalta.

Kuva 4. Savonian testitulosteet tukirakenteineen tulostusalustalle aseteltuna.

Kappaleen tulostusasennon ja tukirakenteiden määrityksen jälkeen asetetaan Magicsin puolella tulostuksen yleisiä parametreja kuten kerroskorkeus sekä käytettävät tehot ja nopeudet eri tulostuspiirteille. Kappaleiden geometria, lukumäärä ja sijoittelu vaikuttavat lopputulokseen joten parametrejä muokkaamalla on mahdollista parantaa (tai huonontaa) tulostuksen laatua ja nopeutta. Parametrien asettamisen jälkeen tehdään siivutus määritetyn kerroskorkeuden mukaisesti. Savonian testiajossa kerroskorkeus oli 30 mikrometriä.

Kuva 5. Magicsin puolella määritettäviä parametrejä.

Siivutettu tiedosto kopioidaan tulostinkoneelle, jossa voidaan määrittää vielä koneparametrit kuten alustan lämpötila, kaavausnopeus, jne. Alumiinille sopiva alustan lämpötilä SLM:n laitteella on 150 C.

Siivutuksen jälkeen (tai sitä ennen) koneeseen on kiinnitettävä tulostusalusta, jolle kappaleet tulostetaan. Toisin kuin muovilaitteissa, kappaleet tulostetaan kiinteästi kiinni alustaan lämmönhallinnan parantamiseksi. Tulosteiden ja alustan väliin luodaan yleensä tukirakennetta irrottamisen helpottamiseksi. Testitulosteessa alustan väliin luotiin 4mm korkea tukirakenne.  Ennen tulostusta tehtäviin vaiheisiin kuuluu myös tulostusmateriaalin lisäys mikäli koneessa ei ennestään ole riittävästi materiaalia sekä kaavaimen kalibroinnin tarkastaminen. Tämän jälkeen voidaan käynnistää tulostusalustan lämmitys. Kyseessä on paksu teräslevy joten sen lämmittäminen 150 asteeseen kestää aikansa.

Kun alusta on lämmitetty, levitetään ensimmäinen kerros jauhetta käsiajolla. Tällä pyritään eliminoimaan mahdolliset alustassa esiintyvät epätasaisuudet. Kun ensimmäinen kerros on levitetty valmiiksi, täytetään kammio suojakasulla ja varsinainen tulostus voi alkaa. Käytetty suojakaasu oli tässä tapauksessa 99,999 % puhdasta Argonia, mutta alumiinin 3D-tulostuksessa suojakaasuksi kelpaisi myös typpi. Mikäli tulostusajo on pitkä, voi olla tarpeellista lisätä materiaalia koneeseen ja/tai vaihtaa ylijäämäsäiliö kesken ajon. Kaavaimella pyritään levittämään aina varmasti riittävä määrä materiaalia, joten sitä jää hieman yli jokaisella levityskerralla.

Tulostusajon aikana prosessia voidaan seurata tulostinkoneelta tai etäyhteyden kautta. Tulostuksen aikana järjestelmä ottaa kuvan jokaisesta kerroksesta (LCS, Layer Control System) ja tallentaa sen.

Kuva 6. Kuvakaappaus SLM:n koneen hallintanäytöstä. Kuva on otettu tulostuksen jälkeen, mutta näkymää voi seurata luonnollisesti myös tulostuksen aikana.

Elme Studiolla on hankittuna SLM280 3D-tulostimeen Melt Pool Monitoring (MPM) lisäosa joka mahdollistaa tulostusprosessin tarkan seurannan kerroksittain. Kerättävää monitorointitietoa voidaan tarkastella ajon aikana tai sen jälkeen. Koska tietoa tallennetaan kerroksittain (testiajossa oli 3212 kerrosta), tarkoittaa se helposti suurta datamäärää. Tehdyssä testiajossa noin 100 mm korkea tulostusajo 30 mikrometrin kerroskorkeudella kesti 24 tuntia 25 minuuttia ja siitä tallentui 80 GB verran mpm-mittadataa.

Kuva 7. SLM Melt Pool Monitoring (MPM).

Kun ajo valmistuu, tyhjennetään kammio suojakaasusta ja jälkitoimenpiteet eli työläin osa valmistusprosessia voi alkaa.

Jälkitoimenpiteet alkavat sillä, että tulostuskammiosta tyhjennetään irtojauhe pois niiltä osin kuin se on mahdollista. Tämä tapahtuu käsityönä siten, että tulostusalustaa ajetaan ylöspäin ja samalla pensselin avulla pyyhitään ylimääräiset jauheet poistoaukon kautta poistosäiliöön. Tuotantosarjan koneissa jauheenpoisto on usein ainakin osittain automatisoitu. Tulevaisuuden koneversioissa automaatio lisääntyy muiltakin osin, mutta jauheenpoisto onnistuu tuskin koskaan täysautomaattisesti, sillä tietyt kappaleen geometriat (ja tukirakenteet) voivat estää jauheen poistamisen ennen kappaleen irroitusta alustasta.

Kuva 8. Irtojauheen poisto tapahtuu käsityönä tulostusajon jälkeen.

Kun suurin osa irtojauheesta on saatu siirrettyä poistosäiliöön, voidaan tulostusalusta irroittaa koneesta. Alumiinikappaleiden tulostuksessa keskikokoisilla koneilla (n. 250*250*300 mm tulostusalue) tulostusalustan paino ei nouse ongelmaksi mutta teräsosien valmistuksessa alustan poistamiseen voidaan tarvita jo apuvälineitä.

Kuva 9. Valmiit kappaleet on poistettu koneesta. Oikealla näkyy tukirakenteen lievä murtuminen lämpöjännityksistä johtuen.

Kun kappale on irroitettu, viedään se irtojauhepöntön kanssa kierrätysasemalle sillä kappaleista irtoaa vielä runsaasti jauhetta kun alustaa voidaan vapaasti liikutella ja käännellä eri asentoihin. Ylimääräinen jauhe voidaan käyttää uudelleen kunhan se käytetään seulan läpi jossa poistetaan mahdolliset epäpuhtaudet ja liian suureksi kasvaneet partikkelit jauheen joukosta. Tässä vaiheessa voidaan myös irroittaa koneesta kaavain ja puhdistaa sekä kammio että kaavain kunnolla. Puhdistustoimenpiteisiin kuuluu myös olennaisesti laserin linssin suojalasin puhdistus ja kaavaimen pyyhkimen tarkastus (tarvittaessa vaihto).

Kuva 10. Metallijauheita käsitellessä tulee aina huolehtia asianmukaisesta suojavarustuksesta. Vasemmalla seulonta-asema, oikealla puhdistetaan jauhepöntön yläosaa/tiivistettä.

Mikäli valmistettaville kappaleille täytyy tehdä lämpökäsittely, on se usein järkevää tehdä tässä vaiheessa, kun kappaleet ovat vielä kiinni alustassa. Alumiinin (AlSi10Mg) ominaisuuksiin lämpökäsittelyn on todettu vaikuttavan seuraavasti (Lähde: University of Oulu/FMT, Tero Jokelainen, ”C3TS report 3 – Heat treatments for AlSi10Mg and 316L”, 12.1.2018):

  • Myötöraja 250 Mpa -> 150 Mpa
  • Murtolujuus 400 Mpa -> 300 Mpa
  • Murtovenymä 1.6 mm -> 3.5 mm

Kappaleiden irroitus alustasta hoituu usein vannesahalla, lankasahalla tai puukkosahalla. Kappaleiden irroituksen jälkeen tulostusalusta puhdistetaan tulostuksen jäljistä – usein tulostusalusta koneistetaan suoraksi mutta aina koneistusta ei tarvita.

Tukien irroittaminen kappaleista voi olla hyvinkin työlästä ja haastavaa joten usein 3D-tulostuksessa mainittu ”complexity is free” (vapaasti suomennettuna jotakuinkin ”hankalat muodot ilman lisäkustannuksia”) ei pidä täysin paikkaansa metallitulostuksen osalta. Kun suunnittelussa pidetään 3D-tulostuksen rajoitukset mielessä, helpottaa se myös jälkikäsittelyvaiheita kuten tukien poistamista. On hyvä huomioida että joidenkin tukirakenteiden luominen osaksi lopullista kappaletta on valmistuskustannusten kannalta edullista, jos ne eivät haittaa lopputuotteen toiminnallisuutta.

Kun tukirakenteet on poistettu, kappale voidaan jälkikäsitellä. Yleisimpiä jälkikäsittelytoimenpiteitä 3D-tulostetuille metallikappaleille ovat lasikuulapuhallus ja mittatarkkojen pintojen koneistukset.

Kuva 11. Valmiita testikappaleita lasikuulapuhallettuina.

 

Antti Alonen
TKI-asiantuntija
Savonia-ammattikorkeakoulu

3D-tulostuksen palveluntarjoajat Suomessa, tilannekatsaus alihankintamessuilta 2018

Alihankintamessut on Suomen suurin vuosittain järjestettävä teollisuuden alihankinnan messutapahtuma, jossa kävi tänä vuonna n. 17000 vierailijaa. 3D-tulostus / lisäävä valmistus on noussut teollisuudessa varteenotettavaksi valmistusmenetelmäksi jota hyödynnetään niin prototyyppien, työkalujen kuin lopputuotteidenkin valmistuksessa.

Suomi on ollut 3D-tulostuksen hyödyntämisessä muuta maailmaa useita vuosia jäljessä, mutta vähitellen sen käyttö yleistyy myös täällä. Alihankintamessujen messuoppaassa oli listattu tuotteissa ja palveluissa ”3D-tulostuspalvelu” lähes 40 palveluntarjoajan osalta. Valtaosa listatuista yrityksistä käyttää 3D-tulostusta omassa toiminnassaan ja tarjoaa 3D-tulostuspalvelua lähinnä sivupalveluna asiakkailleen.

Yhtenä esimerkkinä tällaisesta palveluntarjoajasta on V.A.V Group Oy, joka tarjoaa valmistuksen lisäksi asiantuntemusta tiivisteratkaisujen raaka-aineista, valmistuksesta ja asennuksesta. Yrityksellä on käytössä SLM 125 –metallitulostin jota käytetään pääosin sisäisesti työkaluvalmistuksessa. Yritys tarjoaa myös tulostuspalvelua asiakkailleen, mutta ei varsinaisesti toimi tyypillisenä 3D-tulostuspalvelua tarjoavana toimijana.

Myöskään tutkimuslaitokset ja oppilaitokset eivät toimi varsinaisina lopputuotteiden 3D-tulostuspalvelun tarjoajina, sillä niiden laitteistot soveltuvat paremmin tutkimuskäyttöön kuin kappaleiden massavalmistukseen. Ne tarjoavat usein osaamista, koulutuspalveluita ja ”ideasta tuotteeksi” –vaiheen palveluja (eli tuotteen/kappaleen kehitystä suunnittelusta materiaalitestaukseen ja demonstraatiovaiheeseen), mutta lopputuotteiden ja tuotantokappaleiden valmistuksessa ne eivät kilpaile palveluntarjoajien kanssa.

Varsinaisia puhtaasti 3D-tulostukseen keskittyneitä palveluntarjoajia on Suomessa tällä hetkellä noin kymmenen. Tulostuspalvelujen lisäksi ne tarjoavat usein myös suunnittelupalvelua, sillä 3D-tulostuksesta saadaan usein paras hyöty vain silloin, kun kappale on suunniteltu 3D-tulostettavaksi.

Tämän vuoden aikana palveluntarjonnassa on tapahtunut muutoksia paitsi laiteinvestointien myötä kapasiteetin nousussa, myös palveluntarjoajien fuusioiden myötä. Muutamat palveluntarjoajista ovat samalla myös joidenkin laitemerkkien maahantuojia ja edustajia.

Yhteisenä tekijänä lähes kaikille palveluntarjoajille on piensarjatuotannon kasvaminen. Useampi toimija on ottanut palveluntarjontaansa myös metallitulostuksen omien tuotantolaitteiden hankkimisen myötä. Tällä hetkellä käytännössä kaikki niistä tarjoavat metallitulostusta joko omien laitteiden tai alihankinnan kautta. Asiakkaita ovat lähinnä yritykset, joskin kaikki tarjoavat tulostuspalvelua myös yksityishenkilöille. Niiden osuus toiminnasta on kuitenkin yleisesti ottaen vain joitakin prosentteja.

Taustalla on usein se, että yksityshenkilöiden tarve ja tieto 3D-tulostuksesta on vielä vähäistä, eikä asiakkailta löydy valmistuksessa tarvittavia 3D-malleja valmiina. Yksityishenkilöiden kiinnostus 3D-tulostukseen hiipuu usein siinä vaiheessa kun heille selviää 3D-mallin valmistamiseen liittyvä työ ja kustannus joka voi olla huomattavasti 3D-tulostuskustannusta korkeampi. 3D-mallinnus ei sinänsä ole enää uusi asia sillä se on ollut yleistä teollisuudessa jo parinkymmenen vuoden ajan, mutta kyseessä on asia johon peruskuluttaja ei ole välttämättä törmännyt ellei työskentele tekniikan alalla.

Tulostusmateriaaliesta löytyy suomalaisilta palveluntarjoajilta lukuisia eri vaihtoehtoja niin muovien kuin metallienkin osalta. Muovikappaleiden piensarjatuotannossa yleisin käytetty materiaali on Polyamidi PA12 (Nylon) joka on yleisin jauhepetimenetelmissä käytetty materiaali. Kuluttajienkin yleisesti käytettävissä olevien pursotustekniikkaan perustuvien 3D-tulostinlaitteiden yleisimmät materiaalit ovat ABS ja PLA, mutta vaihtoehtoja niihin on jo satoja. Nesteen fotopolymerisointiin perustuvissa menetelmissä käytetyt uv-kovettuvat nestemäiset hartsit ovat usein valmistajakohtaisia seoksia.

Metallipuolella yleisintä käytettyä materiaalia Suomessa on toistaiseksi hankala arvioida, sillä tarjonta on Suomessa vielä rajattua. Todennäköisesti yleisin 3D-tulostettu metalli on alumiini (AlSi10Mg) sillä tulostusnopeus on siinä muita metalleja nopeampaa. Muita yleisesti tarjolla olevia metallitulosteiden valmistusmateriaaleja Suomessa ovat ruostumaton teräs (316L), työkaluteräs (Maraging steel), kobolttikromi, titaani (Ti64) ja Inconel.

Kuva 1. 3D-tulostuspalveluntarjoajia Suomessa 2018

Alla on listattuna alihankintamessuilla esillä olleet suomalaiset 3D-tulostuksen palveluntarjoajat, niiden käytössä olevat 3D-tulostusmenetelmät sekä menetelmäkohtaisesti suurin mahdollinen tulostusalue:

Ajatec Oy

Sijainti: Rusko

Ajatec Prototyping on entinen Protolabs Finland (joka on puolestaan entinen Alphaform RPI Oy). Omistaja on nykyisin täysin suomalainen, mutta yritys tekee edelleen tiivistä yhteistyötä Protolabsin kanssa hyödyntäen tarvittaessa laajaa laitekantaa saksassa ja englannissa. Yritys tarjoaa palveluja prototyyppien ja piensarjojen valmistukseen 3D-tulostamalla ja pikavalutekniikoilla. Yleisin käytetty materiaali Polyamidi PA12 ja nestemäiset hartsit kuten Somos 1112 ja tyypillinen toimitusaika 2-4 päivää.

Menetelmät ja tulostusalueet

  • Nesteen fotopolymerisointi (SLA), 350 mm x 350 mm x 350 mm (suomessa) – 736 mm x 635 mm x 533 mm (Protolabsin kautta)
  • Jauhepetimenetelmä (SLS), 700 mm x 380 mm x 580 mm
  • Sidosaineruiskutus (Binder Jetting), 254 x 381 x 203 mm
  • Metallitulostus (alihankintana, DMLS), 250 mm x 250 mm x 325 mm

Lisätietoja: https://ajatec.eu/

Kuva 2. 3D-tulostettu kappale pinnoitettuna

Prenta

Sijainti: Kangasala

Prenta tarjoaa laitevalmistuksen lisäksi tulostuspalvelua sekä koulutuspalveluja yrityksille ja oppilaitoksille. Yritys on yksi harvoista suomalaisista 3D-tulostimien laitevalmistajista, valikoimassa on pursotustekniikkaan perustuvat laitteet.

Menetelmät ja tulostusalueet

  • Pursotusmenetelmä (FGF), 1400 mm x 1200 mm x 1200 mm (granulaatin pursotus)
  • Pursotusmenetelmä (FDM) 1000 mm x 1000 mm x 1000 mm
  • Metallin tulostus (alihankintana), 90 mm x 90 mm x 80 mm ja 250 mm x 250 mm x 325 mm

Lisätietoja: http://www.prenta.fi/

Prentan osastolla oli esillä UPM Formi puukuitufilamentista tulostettu, 2 metriä korkea ja 36 kg painava patsas.

Materflow

Sijainti: Lahti

Materflow tarjoaa 3D-tulostuspalveluja, suunnittelua ja tarvekartoitusta. Yritys osti AM Finland Oy:n metallitulostuslaitteiston ja tarjonnassa on  nyt oman koneen voimin myös metallitulosteita. Laitteisto käyttöönotettiin kesällä ja on ollut aktiivisessa käytössä siitä lähtien. Käytetyt materiaalit ovat olleet ruostumaton teräs ja kobolttikromi.

Menetelmät ja tulostusalueet

  • Jauhepetimenetelmä (SLS), 330 mm x 330 mm x 620 mm
  • Nesteen fotopolymerisointi (3SP), 260 mm x 175 mm x 193 mm
  • Metallitulostus (DMLS), 90 mm x 90 mm x 80 mm

Lisätietoja: https://www.materflow.com/

Kuva 4. Materflow käyttää Concept Laserin jauhepetitekniikkaan perustuvaa metallitulostinta

3DTech Oy

Sijainti: Salo ja Turku

3DTech myy 3D-tulostuslaitteita ja ohjelmistoja sekä tarjoaa 3D-tulostukseen liittyviä teollisia 3D-ratkaisuja (mm. 3D-tulostus, 3D-skannaus ja sopimusvalmistus). Yritys hankki vuosi sitten käyttöönsä HP MultiJetFusion 4200 –sarjan laitteen ensimmäisenä Suomessa. Loppuvuoden aikana on tulossa toinen samanlainen laite lisää joka tarkoittaa yrityksen oman valmistuskapasiteetin tuplaantumista MJF -menetelmän osalta.

Menetelmät ja tulostusalueet

  • Pursotusmenetelmät (FDM), 254 mm x 254 mm x 305 mm
  • Multi Jet Fusion (MJF), 380 mm x 284 mm x 380 mm
  • Nesteen fotopolymerisointi (SLA), 145 mm x 145 mm x 175 mm

Lisätietoja: http://3dtech.fi/

Kuva 5. HP Multi Jet Fusion 3D-tulostin käyttää materiaalina Polyamidia (PA12)

3DFormtech Oy

Sijainti: Jyväskylä

3DFormtech tarjoaa 3D-tulostuspalveluja muovista ja metallista sekä koulutusta, 3D-mallinnusta, konsultointia, kartoitusta ja 3D-tulosteiden pinnoitusta. Yritys on Suomen suurin palveluntarjoaja muovikappaleiden SLS-tulosteissa. Kevään 2018 aikana yritys hankki käyttöönsä myös metallitulostimen (EOS M 290) jonka käyttöönotto on ollut nopeaa sillä asiakkaille on jo toimitettu tulosteita mm. seuraavista materiaaleista: 316L, Maraging Steel MS1, TI64 titaani, Alsi10mg.

Menetelmät ja tulostusalueet

  • Jauhepetitulostus (SLS), 340 mm x 340 mm x 600 mm
  • Metallitulostus (DMLS), 250 mm x 250 mm x 325 mm

Lisätietoja: www.3dformtech.fi

Kuva 6. Piensarjatuotanto myös metallitulosteiden osalta on jo arkipäivää.

Maker3D Oy

Sijainti: Helsinki ja Lahti

Maker3D tarjoaa 3D-tulostusta (mm. sopimusvalmistus, pienoismallit, työkaluvalmistus) sekä tuotekehityspalveluja. Yritys on Formlabs sekä Ultimaker –laitteiden edustaja Suomessa. Maker3D fuusioitui Granon tulostuspalvelun kanssa (laitteistot ja henkilöstö) kevään/kesän aikana. Kun prosessi saadaan päätökseen, myös yrityksen nimi saattaa muuttua.

Menetelmät ja tulostusalueet

  • Pursotusmenetelmät (FDM), 406 mm x 355 mm x 406 mm
  • Nesteen fotopolymerisointi (SLA), 145 mm × 145 mm × 175 mm
  • Nesteen ruiskutus (Polyjet), 350 mm x 350 mm x 200 mm
  • Nesteen ruiskutus (MJP), 298 mm x 185 mm x 203 mm
  • Sideaineen ruiskutus (CJP), 380 mm x 250 mm x 200 mm
  • Jauhepetitulostus (SLS), 381 mm x 330 mm x 460 mm

Lisätietoja: http://www.maker3d.fi

Kuva 7. Maker3D on myös Ultimakerin maahantuoja

3DStep Oy

Sijainti: Ylöjärvi

3DStep tarjoaa muovin ja metallin 3D-tulostuspalvelua sekä suunnittelupalveluja ja koulutusta. Yritys oli ensimmäinen kaupallinen toimija Suomessa teollisen mittakaavan 3D-tulostinlaitteella (SLM 280HL Twin). Muovitulosteiden valmistuspalvelu tapahtuu HP:n Multi Jet Fusion 4200 –laitteella. 3DStep järjestää kuukausittaisia ”3DStep Club” –yhteisötapahtumia joissa tarjotaan tietoa ja esimerkkejä 3D-tulostuksen hyödyntämisestä. Tapahtumat kulkivat aiemmin ”Master’s Studio” –nimellä.

Menetelmät ja tulostusalueet

  • Multi Jet Fusion (MJF), 380 mm x 284 mm x 380 mm
  • Metallitulostus (SLM), 280 mm x 280 mm x 365 mm

Lisätietoja: http://www.3dstep.fi/

Kuva 8. 3DStepin osastolla oli esillä myös esimerkki metallitulosteiden piensarjatuotantokappaleesta

Hetitec Oy

Sijainti: Valkeakoski

Hetitec on ensimmäinen yritys Pohjoismaissa, ja toistaiseksi myös ainoa yritys Suomessa joka tarjoaa hiekkamuottien / hiekkatulosteiden valmistuspalvelua sekä valupalveluja. Yritys on saksalaisen Voxeljet AG:n edustaja Suomessa. Hiekkatulosteita käytetään yleensä kertakäyttöisten hiekkamuottien valmistuksessa osana valuprosessia, mutta hartsilla kovetettuina niitä voidaan käyttää kestävinä kappaleina myös muissa muottisovelluksissa kuten muovien ja metallien syvämuovaus.

Lisätietoja: https://hetitec.com/

Kuva 9. 3D-tulostetun hiekkamuotin avulla valmistettu topologiaoptimoitu valukappale

Protohouse Finland Oy

Sijainti: Salo

Protohouse on erikoistunut prototyyppien valmistukseen ja tarjoaa 3D-tulostusta, koneistusta (3- ja 5- akselikoneilla) sekä laserleikkausta. Yrityksellä on runsaasti kokemusta 3D-tulostuksesta, sillä kyseessä on entinen Nokian sisäinen protopaja.

Menetelmät ja tulostusalueet

  • Nesteen fotopolymerisointi (SLA), tulostusalue 250 mm x 250 mm x 250 mm

Lisätietoja: https://protohouse.fi/

Kuva 10. Protohousella on käytössään 3 kpl 3DSystemsin SLA-tulostinta (Projet 6000HD, Projet 3000HD ja ViperSI2)

 

Antti Alonen
TKI-asiantuntija
Savonia-ammattikorkeakoulu